
SelectiveDES: A Distributed Event Service Add-On for Invocation-Based
Middleware supporting Selective Multi-Channel Communication and

Notification Delivery

Werner Kurschl, Stefan Mitsch, Rene Prokop
Upper Austrian University of Applied Sciences - Research and Development Competence Center

Hauptstraße 117, A-4232 Hagenberg, Austria

Abstract

Mobile enterprise applications typically access data
from the enterprise’s various applications to support col-
laborative working processes. Allowing the mobile applica-
tion to access these data online only would be a major hin-
drance for mobile workers that cannot assume a constantly
available network connection. This problem can be han-
dled by middleware systems, which provide a way to pre-
fetch data on the mobile device. But changes and events on
the central data cannot be foreseen; moreover, they cannot
be delivered to disconnected mobile clients. We introduce
a distributed event service named SelectiveDES for manag-
ing and delivering events to mobile clients in unpredictable
network environments. SelectiveDES is designed as an add-
on to common invocation-based middleware systems; it is
based on the publish-subscribe paradigm and supports se-
lective multi-channel communication and notification deliv-
ery.

1. Introduction

Mobile enterprise applications in industrial environ-
ments often support collaborative working processes. The
mobile workers need to stay in contact with a central office
to report their current status via a wireless network; indus-
trial environments typically operate different networks-e.g.,
IEEE 802.11b/g with high bandwidth and low costs but sub-
optimal coverage, and GPRS with low bandwidth and high
costs in favour of high coverage. To keep costs low, data
is usually transmitted over networks free of cost. Conse-
quently, mobile workers need to work also in areas with no
network coverage. Allowing the mobile application to ac-
cess data online only would be a major hindrance in such
a scenario. Thus, the mobile workers must also have ac-
cess to enterprise data when being offline. Data needs to
be replicated to the mobile device—within the constraints

of available local memory—for offline access; changes and
updates to these data need to be tracked and synchronized
with the enterprise applications when a network connection
can be reestablished.

This problem can be handled by middleware systems,
which provide a way to pre-fetch data on the mobile de-
vice and synchronize local changes with changes on a cen-
tral server. But changes and events on the central server’s
data cannot be foreseen; often, data changes are vital to mo-
bile workers. Hence, the server needs to communicate those
data changes actively to its clients; it cannot wait until the
client initiates synchronization.

To further illustrate these requirements we shortly de-
scribe the environment of MOSES (see [6]), a mobile enter-
prise application for work clearance management in indus-
trial environments. MOSES allows maintenance workers to
process the items on a shared to-do-list. These items repre-
sent a workflow; one worker has to process certain items,
before another worker can begin working on other items
(e.g., the electrician needs to turn off power, before the me-
chanic can start manipulating the conveyor belt). A control
centre observes the work flow and adds new tasks to the to-
do-list as needed. More importantly, the control centre can
identify potentially dangerous areas in the plant and has to
notify workers from their existence at all cost to avoid acci-
dents. In the meantime, office workers might work on op-
tional data further describing items on the to-do-list. These
changes are often of minor importance, as they typically do
not affect the working process.

In the course of the project MOSES we developed an
invocation-based middleware, which especially suits unpre-
dictable network environments in connection with mobile
clients named SmartDOTS.

We separate a distributed event service, called Selec-
tiveDES, from the common middleware functionality. Se-
lectiveDES manages notifications and selects appropriate
communication channels for each notification. A dis-
tributed event service allows objects at different locations



to be notified of events taking place at another object (see
[3]). We use the publish-subscribe paradigm, in which an
object publishes the type of events that are available for
observation by others. Objects, that want to be notified of
events, subscribe to the types of events that are of interest
to them. When the publishing object experiences an event,
notifications about the event are sent to all subscribers that
expressed interest in that type of event.

Mobile enterprise applications in industrial environ-
ments often need special notification delivery semantics
that differ from those used in common distributed event
services. Notifications need to be sent reliably, but the
distributed event service cannot rely on the fact that all
clients happen to be online when the notification is sent.
Depending on a notification’s priority, it needs to be sent
immediately—requiring the service to switch to a different
network—regardless of cost (vital information), or it can be
queued in an event history until a network connection to the
client free of cost can be established (minor information).
We call this mechanism selective multi-channel communi-
cation and notification delivery. Queued notifications need
to be managed in terms of their validity (notifications have
to expire) and consistency. Subsequent notifications might
render a previous notification meaningless or they can over-
ride it.

Shortly summarized, we identified the following require-
ments and challenges for our distributed event service that
are also typical for other mobile enterprise applications in
industrial environments. (i) varying network environments
(often multiple networks, like WLAN, UMTS, or GPRS)
with sporadic connectivity and/or low bandwidth, (ii) noti-
fication of data changes to keep replicated data in sync, (iii)
information can be of different importance (reaching from
minor to vital), and (iv) information can be rendered mean-
ingless or might be overridden.

2. Related Work

Fiege et al. describe in [4] a publish-subscribe mid-
dleware called REBECA for spontaneous pervasive applica-
tions. Their main contribution is the consideration of device
mobility. REBECA consists of a network of brokers that
route notifications to the subscribed clients. A mobile client
can roam between the scopes of different brokers. Addi-
tionally, REBECA defines an entity called virtual client that
collects notifications on behalf of the real client at a broker.
When the real client emerges the broker, the virtual client
hands the collected notifications to the real client. How-
ever, their work stops at defining algorithms for efficiently
routing notifications through brokers and collecting noti-
fications. They do not describe algorithms for managing
events in the queue (time- or semantic-based expiration),
nor do they provide prioritization and alternative networks

for sending important notifications.
Hermes (see [8]) is a distributed event-based middleware

architecture that follows a type- and attribute-based publish-
subscribe model. It introduces an event-type that supports
features commonly known from object-oriented program-
ming languages (like type hierarchies and supertype sub-
scription) to better support features provided in common
middleware. Hermes is designed as an event-based mid-
dleware that completely substitutes common invocation-
based middleware. In contrast, SelectiveDES is designed as
an add-on to existing invocation-based middleware, though
some of Hermes’ concepts (like type hierarchies) can also
be found in our work.

SIENA (see [2]) is an event notification service that aims
to maximize expressiveness and scalability. Expressiveness
refers to the notification service’s ability to filter events and
to use these data for optimizing notification delivery. SIENA
optimizes notification selection and notification delivery to
maximize scalability. Therefore, it proposes a distributed
architecture for the notification service itself.

Meier and Cahill (in [7]) describe STEAM, which is
an event-based middleware for wireless ad-hoc networks.
Their research focus is on event filter types to address the
dynamic aspect of the network topology. In their applica-
tion scenario, a large number of entities can dynamically
join and leave the network.

Yaco (see [1]) is a framework for supporting mobile col-
laborative work. It focuses on user-centric services like
messaging and user discovery, as well as on file-centric ser-
vices like file transfer and search of artifacts. Yaco relies on
a constant network environment and ignores issues related
to temporal decomposition of collaborative work.

Podnar and Lovrek in [9] propose notification persis-
tency for supporting mobility. They substitute proxy sub-
scribers (typically used for collecting notifications while the
real subscriber is unreachable) with persistent notifications
and an expiration mechanism. SelectiveDES does not fol-
low this approach; instead, it tries to deliver notifications
by having the proxy select an appropriate communication
channel. Thus, proxies have to queue less notifications than
in ordinary publish-subscribe systems.

3. Architecture

3.1. Integration

This section describes the integration of the distributed
event service into client-server applications based on a mid-
dleware which provides offline access to the business data.
Fig. 1 shows a mobile application based on the middleware
SmartDOTS, providing access to the business data model
even in unpredictable network environments.



SmartDOTS (Middleware)

SQL

Adapter

SAP

Adapter

Server

Business

Logic

SmartDOTS

Engine

Mobile

Application

SmartDOTS

Service

Business Data Model Business Data Model
Network

SelectiveDES (Distributed Event Service)

Distributed

Event

Service

Network

Client

Connectivity

EventsEvents

Figure 1. The distributed event service SelectiveDES collocated to SmartDOTS.

This middleware offers replication, offline data manage-
ment and synchronization to the mobile client. SmartDOTS
is—like it is usual for this kind of middleware—invocation-
based, which means that the client application is the ac-
tive part, while the server behalves passively. Especially in
service-oriented architectures the server has no possibility
to establish a connection to its clients.

As discussed before, there are scenarios in which the
clients must be notified. As depicted in Fig. 1, Selec-
tiveDES is deployed side by side to the middleware and
uses its own communication channel. A distributed noti-
fication mechanism demands for the server actively trans-
mitting events. Therefore, the notification mechanism is
based on .NET Remoting. The distributed event service is
not tied to the SmartDOTS middleware, it can be used with
any other middleware or even stand-alone. But typically it
is combined with SmartDOTS because of the scope to sim-
ilar environments; it can be seen as server-side add-on to
SmartDOTS.

3.2. Registration and Management of Clients

SelectiveDES offers two peers: the interface IClientsRe-
ception for registration of the clients and the interface IS-
erversReception by which the server application is able to
notify its clients about events on the server. The second
interface is described in Sect. 3.3 in detail. Both inter-
faces are implemented by the class ClientManager which
is the core of the notification mechanism (see Fig. 2). The
ClientManager provides a set of Protocols that can be used
for transmitting the notifications. The protocols define a
cost model containing the arising expenses and the available
bandwidth. The set of supported protocols can be extended
by adding a new pair of Protocol and ClientAddress classes
to the framework. The gray shaded elements in Fig. 2 (et
seq.) depend on the deployment of SelectiveDES and can
be added to the framework by defining them in its configu-
ration.

Client

ClientManager

Connection

GPRSAdress

ClientAdress

WLANAdress

«interface»

IClientsReception

«interface»

IServersReception

«interface»«interface»

GPRS

WLAN

Protocol

Figure 2. Clients and their supported connec-
tions.

Each client that wants to be notified about events on the
server must register itself via the interface IClientsRecep-
tion. By that, the ClientManager receives a remote refer-
ence to the client. Depending on the network condition and
the priority of events, it might be necessary to use alter-
native communication protocols (like WLAN, GPRS, etc.)
for distributing the events at a later point of time. Thus, the
address information can not be implicitly determined from
the connection during the registration process. Instead, the
client itself has to provide explicit information about which
types of protocols are supported and how it can be addressed
over these protocols.

After registering the clients can subscribe for different
event types it is interested in. By that the communication
overhead and costs can be reduced, especially when work-
ing with mobile devices with limited resources (like smart
phones) in demanding network environments.

The ClientManager manages the registered clients and



their communication options. For each client a time-out is
set to remove permanently disconnected clients from the
system. The time-out is reset by “keep-alive” messages
generated inside the distributed notification mechanism af-
ter each successfully transmitted notification. Additionally,
“keep-alive” messages can also be provided over the inter-
face IServersReception; thus, the server implementation of
the distributed application can also reset the time-out when
the client invokes the server.

3.3. Event Management

The distributed notification mechanism supports various
events, which must be defined in its configuration. Each
event definition contains an event type, a priority, time to
live and a cost limit, which its transmission must not exceed.

The events that should be distributed can be triggered
over the interface IServersReception. The interface does
not accept event objects; the kind of event is defined by
delivering its event type. The ClientManager retrieves the
corresponding Event object from the EventFactory (Factory
pattern, see [5]). To keep the number of instantiated Event
objects small, the EventFactory holds an EventPool, which
contains exactly one instance per event type. By that the
number of Event objects remains constant independently
from the number of clients and triggered events.

The ClientManager passes the Events to the Clients,
which subscribed for this event type. The Events are not
transmitted immediately, but managed in a Notification-
Queue until it is their turn to be sent. Fig. 3 shows the
relationship between the Clients and the triggered Events.
The NotificationQueue holds additional information (like
a time-out) to the shared Events in Notifications. Notifi-
cations are small-footprint objects; they represent a single
Event at one single Client.

ClientManager

Client

EventFactory EventPool

NotificationQueue

Event

ConcreteEvent1 ConcreteEvent2

Notification

«interface»

IClientsReception

«interface»

IServersReception

«interface»«interface»

Figure 3. Buffering and queuing of events.

Based on these values, send order and transmission pro-
tocols will be chosen later. When a new Event is added
to a Client, it must be evaluated individually. The evalu-
ation checks if the Event has influence on already queued
events. For example, it may be useless to send an event “list

changed” twice, because the client has to update the whole
list anyway. Instead, we can increase the already queued
event’s priority when multiple events of the same event type
are queued.

3.4. Transmission of Events

The transmission of the Notifications is a separate, con-
tinuous process which is handled by the EventDispatcher.
The framework contains a single instance of the EventDis-
patcher, which is not related to single Clients. It handles all
queued Notifications globally. That ensures that the high-
priority Notifications are sent first, regardless which Client
they belong to or how many high-priority Notifications are
queued at a single Client.

The EventDispatcher continuously sorts queued Notifi-
cations of all Clients according to their priority, queue time
and failed transmission attempts. Fig. 4 shows the involved
components.

Client

ClientManager

Connection

TransmissionStrategy

NotificationQueue

Event

EventDispatcher

TransmissionStrategyFactory

Notification

«interface»

IClientsReception

«interface»

IServersReception

«interface» «interface»

Figure 4. Transmission of events.

The transmission of single Notifications is triggered by
the EventDispatcher and performed by a TransmissionStrat-
egy. The TransmissionStrategy defines the algorithm of
establishing the best connection for a single transmission
attempt, which can contain multiple connection establish-
ments over various protocols. The concrete Transmission-
Strategy depends on the event type and is created using the
TransmissionStrategyFactory. The concrete strategy is de-
termined just in time because most Notifications will expire
or will be suspended by subsequent events before reach-
ing this point of process. The TransmissionStrategyFactory
works analogous to the EventFactory with its EventPool de-
scribed before.

The concrete TransmissionStrategy is responsible for
sending the Notification to the client in the cheapest and
fastest possible way. A possible implementation of the strat-



egy could be to start trying to send using the “cheapest”
connection and continue with the next “expensive” connec-
tion if the cheaper one is not available. The strategy pattern
(see [5]) is used here, because depending on the event type
different approaches of finding the best connection can be
used.

The TransmissionStrategy does not deal with Protocols
directly, but with categories of protocols to make the algo-
rithm simpler and leave the system flexible. By that the
usage of SelectiveDES becomes easier too. In each deploy-
ment different event types and protocols will be used and
must be adapted. This can be done in the configuration,
while adapting the deep-inside algorithm like the Transmis-
sionStrategy is much harder and will be done very rarely.
But assigning individual Protocols to ProtocolCategories is
a simple configuration process. We introduced categories of
Protocols, on which the TransmissionStrategies are based
on to decouple the transmission algorithm and the concrete
protocols. Fig. 5 shows an extension of Fig. 4 in which the
TransmissionStrategy is not directly linked to the protocol.
To illustrate the configurability of the system, the dynami-
cally exchangeable elements are gray shaded.

Client

ConnectionManager

Connection

HighPriorityTransmissionStrategy

LowPriorityTransmissionStrategy

TransmissionStrategy

NotificationQueue

Notification

SimpleConnectionManager

SelfOptimizingConnectionManager CommunicationStatistics

ProtocolCategory

CheapProtocol

ExpensiveProtocol

Protocol

ClientAdress

Figure 5. Decoupling transmission strategy
and concrete protocols.

By having the TransmissionStrategy based on Protocol-
Categories, an additional step becomes necessary to retrieve
the concrete Protocol, which is supported by the Client.
When the TransmissionStrategy decides to use a specific
category of protocols (e.g. CheapProtocol) for the Notifi-
cation currently in process, it uses the ConnectionManager
to retrieve the concrete protocol, which suits the demanded
category and is supported by the Client. It is not sufficient

if the ConnectionManager evaluates just the assignment of
concrete protocols to categories. It must examine which
protocols are supported by the Client, to which the Notifica-
tion should be sent. Nevertheless the decision which proto-
col to deliver might not be distinct, because the Client might
have registered a LAN and a WLAN connection which are
both “cheap” connections.

This is one major point for performance enhance-
ments: While currently the SimpleConnectionManager
(which bases on the mediator pattern, see [5]) is in use,
a statistic-based SelfOptimizingConnectionManager could
reduce the number of transmission attempts dramatically.
The concept is to monitor the transmission attempts per
client and build up a CommunicationStatistics, which con-
tains the data about the reachability behavior of single
clients (i.e., which protocol was used lately). By that the
choice between protocols within the same category could
be based on statistic presumption and would be self opti-
mizing.

If the transmission succeeds, the Notification is deleted
and an internal “keep alive” message is sent to the Client-
Manager to prevent the expiration of the Client. If the trans-
mission fails, it is assumed that the client is offline. There-
fore, the Notification is left in the NotificationQueue and
the queue time is modified to ensure, that the Notification
is realigned correctly by the EventDispatcher and sent at a
later point of time.

4. Conclusion and Further Work

We presented a distributed event service named Selec-
tiveDES that is designed as an add-on to invocation-based
middleware. SelectiveDES introduces the following main
concepts to the field of event services. Communication is no
longer bound to a single network; instead, events determine
the type of networks that can be used. SelectiveDES pro-
vides strategies to reliably transmit notifications within the
constraints defined by events and also minimizes the costs
for transmitting notifications.

Further work will comprise the evaluation of different
transmission strategies and connection manager implemen-
tations. The analysis of a client’s communication behavior
promises interesting optimization possibilities in our sys-
tem.

References

[1] M. Caporuscio and P. Inverardi. Yet Another Framework for
Supporting Mobile and Collaborative Work. In Proceedings
of 12th International Workshop on Enabling Technologies,
Infrastructure for Collaborative Enterprise (WETICE 2003),
pages 81–86, Linz, Austria, 2003. IEEE.



[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service.
19(3):332–383, 2001.

[3] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems—Concepts and Design. Addison-Wesley, Boston, 3
edition, 2001.

[4] L. Fiege, A. Zeidler, F. C. Gärtner, and S. B. Han-
durukande. Dealing with Uncertainty in Mobile Pub-
lish/Subscribe Middleware. In Proceedings of 1st Interna-
tional Workshop on Middleware for Pervasive and Ad-Hoc
Computing (MPAC03), pages 60–67. ACM Press, 2003.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, 1995.

[6] W. Kurschl, S. Schmid, and C. Domscha. MOSES - A Mobile
Safety System for Work Clearance Processes. In Proceed-

ings of the 4th International Conference on Mobile Business,
pages 166–172, Sydney, Australia, 2005. IEEE.

[7] R. Meier and V. Cahill. STEAM: Event-Based Middleware
for Wireless Ad Hoc Networks. In Proceedings of 1st In-
ternational Workshop on Distributed Event-Based Systems
(DEBS02), Vienna, Austria, 2002. IEEE.

[8] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. In Proceedings of 1st
International Workshop on Distributed Event-Based Systems
(DEBS02), Vienna, Austria, 2002. IEEE.

[9] I. Podnar and I. Lovrek. Supporting Mobility with Persistent
Notifications in Publish/Subscribe Systems. In Proceedings of
3rd International Workshop on Distributed Event-Based Sys-
tems (DEBS04), pages 80–85, Edinburgh, UK, 2004. IEEE.


