CSC 347 - Concepts of Programming Languages

Scope and Lifetime

Instructor:; Stefan Mitsch

@ Learning Objectives

© How should identifiers relate to memory locations?

e Understand the difference between a memory location and an identifier pointing to it

o Understand the difference between the lifetime of a memory location and the lifetime
of a pointer to it

e Scope

o Scope of an identifier: region of text in which it may be used

void f (int x) {
int y =x + 1;
if (x > y) {
int z=vy + 1;
printf ("z = %d\n", z);
}
}

e x and y arein scope after their declaration until end of function f

e 7z isinscope after its declaration until end of if -block

e Occurrences of Identifiers

e free occurrence has no matching binding

y = 5%x; // Free occurrences of x and y

e binding occurrence declares the identifier

int y; // binding occurrence of y

e bound occurrence follows matching declaration

int y; // Binding occurrence of y

int Xx; // Binding occurrence of X

X = 6; // Bound occurrence of x

y = 5%xx; // Bound occurrences of x and y

e Occurrences of Identifiers

o Complete programs usually have no free occurrences of identifiers

e How do IDEs treat free occurrences?

e Scope of Identifiers

e Scope rules not limited to just variables

o Apply to identifiers for
o variables

o function arguments

o function type parameters
o function/method names
o class names

o and more

e Circular Dependencies

© What to do with circular dependencies?

char f (int x) { return x>0 ? g (x-1) : 1; } char g (int x) { return f (x) + f (x); }

e Most modern languages allow any order
o C,C++ require forward declarations

char f (int x);
char g (int x);
// T and g definitions can now be in any order

e Shadowing

@ Should reusing names be allowed?

static void f () { e See Java Language Specification
int X = 1; $ javac C.java
{ C.%ava:7:..(Jerror: variable x is already defined in method f()
int y = X + 1; 1nt,>f_y+1,
{ 1 error

int x =y + 1;
System.out.println (
s
I3

X = + X);

}

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

e Shadowing

e Fields in Java have different treatment

public class C { $ javac C.java
static int x = 1; $ java C
static void f () { x =3
int y = x + 1;
{
int x =y + 1;
System.out.println ("x =" + x);
¥
Iy

public static void main (String[] args) {
f();
Iy
I3

e Shadowing

e Cisless strict than Java (on shadowing)

int main () {
int x = 1;
{
int y =x + 1;
{
int x =y + 1;
printf ("x = %d\n", Xx);
¥
¥
}

$ gcc —0 scope scope.c
$./scope
X = 3

10

e Shadowing

e Scalais less strict than Java (on shadowing)

object C: $ scalac C.scala
def f () = $ scala C
var x = 1; X =3
var y = x + 1;
var x =y + 1;
println ("x =" + Xx)
end f

def main (args:Array[String]) =
f ()

end mailn

11

e Shadowing

e Shadowing occurs in the Scala REPL

scala> val x =1
x: Int =1

scala> def f (a:Int) = x + a
f: (a: Int)Int

scala> f (10)
res@: Int = 11

scala> val x = 2
x: Int = 2

scala> x
resl: Int = 2

scala> f (10)
res2: Int = 11

e Scala REPL behavior corresponds to

{
val x = 1;
def f (a:Int) = x + a
f (10)
{
val x = 2;
X
f (10)
¥
}

12

e Shadowing and Recursion

©Is x inscope?

lnt maln (VOld) { $ gcc -0 scope scope.c

$ gcc -Wall —o scope scope.c

lnt X = 10 . scope.c: In function ‘main’:
’ scope.c:5:7: warning: unused variable ‘x’ [-Wunused-variablel
_{ scope.c:7:9: warning: ‘x’ is used uninitialized in this function [-Wuninitialized]

$./scope
X = 00000001

int x = x + 1;
printf ("x = %08x\n", x);
Iy

return 0;

13

e Shadowing and Recursion

e Java requires that all variables be initialized before use.

class C {
public static void main (Stringl[] args) {
int x =1 + Xx;
System.out.printf ("x = %08x\n", x);

X.java:3: error: variable x might not have been initialized
int x =1 + Xx;

N\

14

e Shadowing and Recursion

e Scala variables and fields are set to default values (e.g., @) before the initialization
code is run

e Recursion is allowed when initializing fields

scala> val x:Int = 1 + X public class C { o
. Int = 1 private final int x; // default-initialized to @
X nt = public int x() { return x; }
public C() { x =1 + x; }
b

15

e Shadowing and Recursion

© Does that work with complex datatypes?

val xs:List[Int] =1 :: xs
// java.lang.NullPointerException

e xs default-initializedto null

e null != Nil : exception occurs because 1 ::

null is null.::(1)

16

e Shadowing and Recursion

case class S(head:Int, tail:S)

scala> val ss:S = S(1, ss)
ss: S = S(1,null)

e Need to delay evaluation of tail

case class T(head:Int, tail:()=>T)

scala> val ts:T = T(1, ()=>ts)

ts: T = T(1,$$Lambda$1324/2038353966@4d500865)
scala> ts.tail().tail().head

resl4: Int =1

17

e Scala Streams

e Streams #:: are non-strict in right-hand argument

e Deprecated, use LazylList instead

val ones:Stream[Int]
// ones: Stream[Int]

1 #:: ones
Stream(1, ?)

scala> ones.take (5)
res@: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> ones.take (5).toList
resl: List[Int] = List(1, 1, 1, 1, 1)</code></pre>

18

e Scala Streams

e [azy evaluation of stream elements

def f (x:Int) : Stream[Int] =
println (s"f($x)")
X #:: f(x+1)

// T: (x: Int)Stream[Int]

scala> val xs:Stream[Int] = f(10)
f(10)
xs: Stream[Int] = Stream(10, <not computed>)

scala> xs.take(4).tolList

f(11)

f(12)

f(13)

resl2: List[Int] = List(10, 11, 12, 13)

scala> xs.take(4).tolList
res1l3: List[Int] = List(10, 11, 12, 13)

scala> xs.take(6).tolList

f(14)

f(15)

resl4: List[Int] = List(10, 11, 12, 13, 14, 15)

19

e Scala Lazy Lists

e [azy evaluation of list elements

def f (x:Int) : LazyList[Int] =
println (s"f($x)")
X #:: f(x+1)

// fi: (x: Int)LazyList[Int]

scala> val xs:lLazylList[Int]
xs: LazyList[Int] = <not

scala> xs.take(4).tolList
(10)

f(11)

f(12)

f(13)

resl2: List[Int] = List(10,

scala> xs.take(4).tolList
res1l3: List[Int] = List(10,

scala> xs.take(6).toList
f(14)

f(15)

resl4: List[Int] = List(10,

= f(10)
computed>

11, 12, 13)

11, 12, 13)

11, 12, 13, 14, 15)

20

e Static and Dynamic Scope

© What does this program do?

e Using Scala syntax, but various different semantics

Int = 10
() =
20

var
def
X

I —h X

def g () =
var x:Int = 30

f ()

g ()
println (x)

21

e Static Scope

o Static scope: identifiers are bound to the closest binding occurrence in an enclosing
block of the program code

o Static scoping property: We can rename any identifier, so long as we rename it
consistently throughout its scope (and so long as the new name we have chosen does
not appear in the scope)

e Also known as lexical scope

22

e Static and Dynamic Scope

e Dynamic scope: identifiers are bound to the binding occurrence in the closest
activation record

o Consistent renaming may break a working program!

23

e Static and Dynamic Scope

e Where could z come from?

def g (x:Int) : Int =
var y:Int = x x 2
Z kX X x Yy // x and y are local; z is non-Tlocal

e Dynamic scope:
o non-locals are not resolved (bound) until runtime

o to resolve non-local identifier, look at the callers

24

e Static vs. Dynamic Scope: Scala

e Scala uses static scope (prints 20)

e Most languages do use static scope

var x:Int = 10
def f () : Unit =
X = 20

def g () : Unit =
var x:Int = 30

f ()

g ()
println (x)

25

e Static vs. Dynamic Scope: Bash

e Bash (prints 10):

x=10

function f() {
xX=20

}

function g() {
local x=30
f

¥

g
echo $x

26

e Static vs. Dynamic Scope: C

e C functions (prints 20):

int x = 10;
void f () {

X = 20;
}

void g () {
int x = 30;
f ();

¥

int main () {

g ();
printf ("x=%d\n", Xx);

27

e Static vs. Dynamic Scope: C macros

e C macros (prints 10):

int x = 10;
#define f() { \
X = 20; \
¥
void g() {
int x = 30;
f ();
¥

int main () {

g ();
printf ("x=%d\n", Xx);

e Macros expand in-place

int x = 10;
void g() {
int x = 30;
X = 20;
}
int main () {

g ();
printf ("x=%d\n", x);

28

e Static vs. Dynamic Scope: Python

e Python (prints 20):

def main():

def f ():
nonlocal X

X = 20

():
30

29

e Static vs. Dynamic Scope: Python

e Python (prints 20):

def f ():

X = 10
def main():

g ()
print (x)

main()

30

e Static vs. Dynamic Scope: Python

o Python global scope is not static

def useX():
print (x)

def defX():
global x
x =1

>>> useX()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", 1line 2, in useX

NameError: name 'x' 1s not defined

>>> defX()

>>> useX()

1

31

e Static vs. Dynamic Scope

o Well-known PLs have included dynamic scoping...
o Lisp, Perl, ...

o ...and later added static scoping!

32

e Static vs. Dynamic Scope

Emacs Lisp (prints 10)

(let ((x 10))
(defun f ()
(setq x 20))
(defun g ()
(let ((x 30))
(f)))
(g9)

(message (int-to-string x)))

Common Lisp (prints 20)

(let ((x 10))

(defun f ()
(setq x 20))

(g)
(print x))

(let ((x 10

Scheme (prints 20)

e e

(define (

(g)
(display x)
(newline))

33

e Static vs. Dynamic Scope: Perl

e Perl (prints 10):

local $x = 10;
sub f {

$xX = 20;
}

sub g {
local $x = 30;
f ();

}

g ();

print ($x);

e local : dynamic scope

e Perl (prints 20):

my $x = 10;
sub f {

$x = 20;
¥

sub g {
my $x = 30;
f ();

}

g ();

print ($x);

e my : static scope

34

e Lifetime

o [jfetime of an area of memory: duration during which it is allocated
o [Chapter 7 of Mitchell textbook

e Recall activation records from Systems |

35

e Activation Records

e Activation records: storage space for local variables and intermediate values that the
runtime system generates

e Also known as stack frames

o ARs almost always placed on a call stack

36

e Storage Options

Global Call Stack
e Static storage e In AR in call stack
e Available for lifetime of (stack-allocated)
program o Available whilst function
active (called but not
returned)

Heap

e |In heap (heap-
allocated)

e Available until
deallocated (manually or
via garbage collection)

37

e Lifetime Issues

o YK Lifetime too short
o reads return other value

o writes overwrite other value
o resource state incorrect, e.g., file handle closed
o can cause security problems

o ¥ Lifetime too long
o uses too much memory (memory leak)

o too late in freeing other resources [finalization

o can cause vulnerability to denial of service attacks

38

e Control Links

© How should activation records be connected?

e Some systems, e.g., 32-bit x86, use control links
e Control link in each AR points to previous AR
o Control links provide linked list [stack view of ARs

e ebp register points to AR for most recently called function

39

e Call Stack of Activation Records

e Call stack of ARs allows
o fast allocation of fresh AR on function call

o fast deallocation of AR on function return
o Contrast with heap allocation

o Stack discipline ensures ordering of AR
o (call f) allocate AR for f

o (call g) allocate AR for g
o (return from g) deallocate AR for g
(

©)

return from f) deallocate AR for f

40

e Call Stacks in Multi-Threaded Applications

© How should we maintain activation records in multi-threaded applications?

e Each thread needs a separate call stack

o Calls and returns in separate threads are independent

41

e Heap Allocation

e Heap allocation can use any allocation pattern (not strict like stack discipline)

e For example, allocate M bytes = allocate N bytes = deallocate M bytes = deallocate
N bytes

o Allocations may be long-lived, others short-lived

o Gives freedom, but more costly than call stack

42

e Common Problems

e PLs with garbage collection

©)

©)

Java, Scala, C#, Python, Ruby, JS, Scheme, etc.
Lifetime too long (not GCed)

e PLs with manual memory management

©)

©)

©)

©)

C,C++
Pointers to storage whose lifetime has ended

Dangling pointers to an old AR
Dangling pointers to free d heap memory (use after free)

Double free ing of heap memory

43

e Dangling Pointers: Stack

X% What is wrong with this program?

#include <stdio.h>
#include <stdlib.h>

int *f (int x) {

int y = Xx;
return &y;
}
int main (void) {
int xp = f (1);
printf ("xp = %d\n", *xp);
return 0;

}

e Compile warning

$ gcc -0 ar ar.c
ar.c: In function ‘f’:

ar.c:6:3: warning: function returns address of local variable
[enabled by default]

$./ar
*p =1

44

e Dangling Pointers

e Static analysis tools can help

$ valgrind ./ar

==5505== Memcheck, a memory error detector

==5505== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==5505== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==5505== Command: ./ar

==5505==

==5505== Conditional jump or move depends on uninitialised value(s)
==5505== at Ox4E7C1A1l: vfprintf (vfprintf.c:1596)

==5505== by 0x4E85298: printf (printf.c:35)

==5505== by 0x400536: main (in /tmp/ar)

==5505==

==5505== Use of uninitialised value of size 8

==5505== at Ox4E7A49B: _itoa_word (_itoa.c:195)

==5505== by Ox4E7C4E7: vfprintf (vfprintf.c:1596)

==5505== by 0x4E85298: printf (printf.c:35)

==5505== by 0x400536: main (in /tmp/ar)

==5505== Conditional jump or move depends on uninitialised value(s)
==5505== at Ox4E7A4A5: _itoa_word (_itoa.c:195)

==5505== by O0x4E7C4E7: vfprintf (vfprintf.c:1596)

==5505== by 0x4E85298: printf (printf.c:35)

==5505== by 0x400536: main (in /tmp/ar)

==5505==

xp =1

==5505==
==5505==
==5505==
==5505==
==5505==
==5505==

HEAP SUMMARY:
in use at exit: @ bytes in @ blocks
total heap usage: @ allocs, @ frees, @ bytes allocated

All heap blocks were freed —— no leaks are possible
For counts of detected and suppressed errors, rerun with: -v

Use ——track-origins=yes to see where uninitialised values come from
ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 2 from 2)

45

e Dangling Pointers: Heap

¥ What is wrong with this program?

#include <stdio.h> ° Program compiles

#include <stdlib.h>

int *f (int x) {
int xresult = (int %) malloc (sizeof (int));
xresult = x;
return result;

$ gcc -Wall -o ar ar.c && ./ar
*p = 1

} e but...

int main (void) {
int xp = f (1);
printf ("xp = %d\n", *p);
return 0;

}

46

e Dangling Pointers: Heap

$ valgrind ./ar

==10962==
==10962==
==10962==
==10962==
==10962==

*p =

==10962==
==10962==
==10962==
==10962==
==10962==
==10962==
==10962==
==10962==
==10962==
==10962==
==10962==

==10962==

==10962==

==10962==
==10962==

Memcheck, a memory error detector

Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
Command: ./ar

HEAP SUMMARY :

in use at exit: 4 bytes in 1 blocks
total heap usage: 1 allocs, 0 frees, 4 bytes allocated
LEAK SUMMARY::
definitely lost: 4 bytes in 1 blocks
indirectly lost: @ bytes in @ blocks
possibly lost: @ bytes in @ blocks
still reachable: @ bytes in 0@ blocks
suppressed: @ bytes in 0 blocks

Rerun with —-leak-check=full to see details of leaked memory

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: @ errors from @ contexts (suppressed: 2 from 2)

47

e Dangling Pointers: Heap

X% What is wrong with this program?

#include <stdio.h> e Program compiles

#include <stdlib.h>

int *f (int x) {
int xresult = (int %) malloc (sizeof (int));
xresult = x;
return result;

$ gcc -Wall —o ar ar.c && ./ar
*p = 0

} e pbut...

int main (void) {
int xp = f (1);
free (p);
printf ("xp = %d\n", *p);
return 0;

48

e Dangling Pointers: Heap

$ valgrind ./ar

==13594== Memcheck, a memory error detector

==13594== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==13594== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==13594== Command: ./ar

==13594==

==13594== Invalid read of size 4

==13594== at 0x4005D2: main (in /tmp/ar)

==13594== Address 0x51f0040 is @ bytes inside a block of size 4 free'd
==13594== at Ox4C2A82E: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==13594== by 0x4005CD: main (in /tmp/ar)

==13594==

xp = 1

==13594==

==13594== HEAP SUMMARY:

==13594== in use at exit: @ bytes in @ blocks

==13594== total heap usage: 1 allocs, 1 frees, 4 bytes allocated
==13594==

==13594== A1l heap blocks were freed —— no leaks are possible

==13594==

==13594== For counts of detected and suppressed errors, rerun with: -v
==13594== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)

49

Summary

e Scope: how an identifier refers to a memory location
o Static scope: closest lexical appearance in source code

o Dynamic scope: closest activation record

o Lifetime: how long a memory location is available
o Dangling pointers: point to freed memory

50

