
CSC 347 - Concepts of Programming Languages

Scope and Lifetime

Instructor: Stefan Mitsch

1

 Learning Objectives

 How should identifiers relate to memory locations?

Understand the difference between a memory location and an identifier pointing to it

Understand the difference between the lifetime of a memory location and the lifetime
of a pointer to it



2

 Scope

Scope of an identifier: region of text in which it may be used

void f (int x) {
 int y = x + 1;
 if (x > y) {
 int z = y + 1;
 printf ("z = %d\n", z);
 }
}

x and y are in scope after their declaration until end of function f

z is in scope after its declaration until end of if -block



3

 Occurrences of Identifiers

free occurrence has no matching binding

y = 5*x; // Free occurrences of x and y

binding occurrence declares the identifier

int y; // binding occurrence of y

bound occurrence follows matching declaration

int y; // Binding occurrence of y
int x; // Binding occurrence of x

x = 6; // Bound occurrence of x
y = 5*x; // Bound occurrences of x and y



4

 Occurrences of Identifiers

Complete programs usually have no free occurrences of identifiers

How do IDEs treat free occurrences?



5

 Scope of Identifiers

Scope rules not limited to just variables

Apply to identifiers for

variables

function arguments

function type parameters

function/method names

class names

and more



6

 Circular Dependencies

 What to do with circular dependencies?

char f (int x) { return x>0 ? g (x-1) : 1; } char g (int x) { return f (x) + f (x); }

Most modern languages allow any order

C, C++ require forward declarations

char f (int x);
char g (int x);
// f and g definitions can now be in any order



7

 Shadowing

 Should reusing names be allowed?

static void f () {
 int x = 1;
 {
 int y = x + 1;
 {
 int x = y + 1;
 System.out.println ("x = " + x);
 }
 }
}

See Java Language Specification
$ javac C.java
C.java:7: error: variable x is already defined in method f()
 int x = y + 1;
 ^
1 error



8

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

 Shadowing

Fields in Java have different treatment

public class C {
 static int x = 1;

 static void f () {
 int y = x + 1;
 {
 int x = y + 1;
 System.out.println ("x = " + x);
 }
 }

 public static void main (String[] args) {
 f ();
 }
}

$ javac C.java
$ java C
x = 3



9

 Shadowing

C is less strict than Java (on shadowing)

int main () {
 int x = 1;
 {
 int y = x + 1;
 {
 int x = y + 1;
 printf ("x = %d\n", x);
 }
 }
}

$ gcc -o scope scope.c
$./scope
x = 3



10

 Shadowing

Scala is less strict than Java (on shadowing)

object C:
 def f () =
 var x = 1;
 var y = x + 1;
 var x = y + 1;
 println ("x = " + x)
 end f

 def main (args:Array[String]) =
 f ()
 end main

$ scalac C.scala
$ scala C
x = 3



11

 Shadowing

Shadowing occurs in the Scala REPL

scala> val x = 1
x: Int = 1

scala> def f (a:Int) = x + a
f: (a: Int)Int

scala> f (10)
res0: Int = 11

scala> val x = 2
x: Int = 2

scala> x
res1: Int = 2

scala> f (10)
res2: Int = 11

Scala REPL behavior corresponds to

{
 val x = 1;
 def f (a:Int) = x + a
 f (10)
 {
 val x = 2;
 x
 f (10)
 ...
 }
}



12

 Shadowing and Recursion

 Is x in scope?

int main (void) {
 int x = 10;
 {
 int x = x + 1;
 printf ("x = %08x\n", x);
 }
 return 0;
}

$ gcc -o scope scope.c

$ gcc -Wall -o scope scope.c
scope.c: In function ‘main’:
scope.c:5:7: warning: unused variable ‘x’ [-Wunused-variable]
scope.c:7:9: warning: ‘x’ is used uninitialized in this function [-Wuninitialized]

$./scope
x = 00000001



13

 Shadowing and Recursion

Java requires that all variables be initialized before use.

class C {
 public static void main (String[] args) {
 int x = 1 + x;
 System.out.printf ("x = %08x\n", x);
 }
}

x.java:3: error: variable x might not have been initialized
 int x = 1 + x;
 ^



14

 Shadowing and Recursion

Scala variables and fields are set to default values (e.g., 0) before the initialization
code is run

Recursion is allowed when initializing fields

scala> val x:Int = 1 + x
x: Int = 1

public class C {
 private final int x; // default-initialized to 0
 public int x() { return x; }
 public C() { x = 1 + x; }
}



15

 Shadowing and Recursion

 Does that work with complex datatypes?

val xs:List[Int] = 1 :: xs
// java.lang.NullPointerException

xs default-initialized to null

null != Nil : exception occurs because 1 :: null is null.::(1)



16

 Shadowing and Recursion

case class S(head:Int, tail:S)

scala> val ss:S = S(1, ss)
ss: S = S(1,null)

Need to delay evaluation of tail

case class T(head:Int, tail:()=>T)

scala> val ts:T = T(1, ()=>ts)
ts: T = T(1,$$Lambda$1324/2038353966@4d500865)
scala> ts.tail().tail().head
res14: Int = 1



17

 Scala Streams

Streams #:: are non-strict in right-hand argument

Deprecated, use LazyList instead

val ones:Stream[Int] = 1 #:: ones
// ones: Stream[Int] = Stream(1, ?)

scala> ones.take (5)
res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> ones.take (5).toList
res1: List[Int] = List(1, 1, 1, 1, 1)</code></pre>



18

 Scala Streams

Lazy evaluation of stream elements

def f (x:Int) : Stream[Int] =
 println (s"f($x)")
 x #:: f(x+1)
// f: (x: Int)Stream[Int]

scala> val xs:Stream[Int] = f(10)
f(10)
xs: Stream[Int] = Stream(10, <not computed>)

scala> xs.take(4).toList
f(11)
f(12)
f(13)
res12: List[Int] = List(10, 11, 12, 13)

scala> xs.take(4).toList
res13: List[Int] = List(10, 11, 12, 13)

scala> xs.take(6).toList
f(14)
f(15)
res14: List[Int] = List(10, 11, 12, 13, 14, 15)



19

 Scala Lazy Lists

Lazy evaluation of list elements

def f (x:Int) : LazyList[Int] =
 println (s"f($x)")
 x #:: f(x+1)
// f: (x: Int)LazyList[Int]

scala> val xs:LazyList[Int] = f(10)
xs: LazyList[Int] = <not computed>

scala> xs.take(4).toList
f(10)
f(11)
f(12)
f(13)
res12: List[Int] = List(10, 11, 12, 13)

scala> xs.take(4).toList
res13: List[Int] = List(10, 11, 12, 13)

scala> xs.take(6).toList
f(14)
f(15)
res14: List[Int] = List(10, 11, 12, 13, 14, 15)



20

 Static and Dynamic Scope

 What does this program do?

Using Scala syntax, but various different semantics

var x:Int = 10
def f () =
 x = 20

def g () =
 var x:Int = 30
 f ()

g ()
println (x)



21

 Static Scope

Static scope: identifiers are bound to the closest binding occurrence in an enclosing
block of the program code

Static scoping property: We can rename any identifier, so long as we rename it
consistently throughout its scope (and so long as the new name we have chosen does

not appear in the scope)

Also known as lexical scope



22

 Static and Dynamic Scope

Dynamic scope: identifiers are bound to the binding occurrence in the closest

activation record

Consistent renaming may break a working program!



23

 Static and Dynamic Scope

Where could z come from?

...
def g (x:Int) : Int =
 var y:Int = x * 2
 z * x * y // x and y are local; z is non-local

Dynamic scope:

non-locals are not resolved (bound) until runtime

to resolve non-local identifier, look at the callers



24

 Static vs. Dynamic Scope: Scala

Scala uses static scope (prints 20)

Most languages do use static scope

var x:Int = 10
def f () : Unit =
 x = 20

def g () : Unit =
 var x:Int = 30
 f ()

g ()
println (x)



25

 Static vs. Dynamic Scope: Bash

Bash (prints 10):

x=10
function f() {
 x=20
}
function g() {
 local x=30
 f
}
g
echo $x



26

 Static vs. Dynamic Scope: C

C functions (prints 20):

int x = 10;
void f () {
 x = 20;
}
void g () {
 int x = 30;
 f ();
}
int main () {
 g ();
 printf ("x=%d\n", x);
}



27

 Static vs. Dynamic Scope: C macros

C macros (prints 10):

int x = 10;
#define f() { \
 x = 20; \
}
void g() {
 int x = 30;
 f ();
}
int main () {
 g ();
 printf ("x=%d\n", x);
}

Macros expand in-place

int x = 10;
void g() {
 int x = 30;
 x = 20;
}
int main () {
 g ();
 printf ("x=%d\n", x);
}



28

 Static vs. Dynamic Scope: Python

Python (prints 20):

def main():
 def f ():
 nonlocal x
 x = 20

 def g ():
 x = 30
 f ()

 x = 10
 g ()
 print (x)

main()



29

 Static vs. Dynamic Scope: Python

Python (prints 20):

def f ():
 global x
 x = 20

def g ():
 x = 30
 f ()

x = 10
def main():
 g ()
 print (x)

main()



30

 Static vs. Dynamic Scope: Python

Python global scope is not static

def useX():
 print (x)

def defX():
 global x
 x = 1

>>> useX()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in useX
NameError: name 'x' is not defined
>>> defX()
>>> useX()
1



31

 Static vs. Dynamic Scope

Well-known PLs have included dynamic scoping...

Lisp, Perl, ...

...and later added static scoping!



32

 Static vs. Dynamic Scope

Emacs Lisp (prints 10)

(let ((x 10))
 (defun f ()
 (setq x 20))
 (defun g ()
 (let ((x 30))
 (f)))
 (g)
 (message (int-to-string x)))

Common Lisp (prints 20)

(let ((x 10))
 (defun f ()
 (setq x 20))
 (defun g ()
 (let ((x 30))
 (f)))
 (g)
 (print x))

Scheme (prints 20)

(let ((x 10))
 (define (f)
 (set! x 20))
 (define (g)
 (let ((x 30))
 (f)))
 (g)
 (display x)
 (newline))



33

 Static vs. Dynamic Scope: Perl

Perl (prints 10):

local $x = 10;
sub f {
 $x = 20;
}
sub g {
 local $x = 30;
 f ();
}
g ();
print ($x);

local : dynamic scope

Perl (prints 20):

my $x = 10;
sub f {
 $x = 20;
}
sub g {
 my $x = 30;
 f ();
}
g ();
print ($x);

my : static scope



34

 Lifetime

Lifetime of an area of memory: duration during which it is allocated

 Chapter 7 of Mitchell textbook

Recall activation records from Systems I



35

 Activation Records

Activation records: storage space for local variables and intermediate values that the

runtime system generates

Also known as stack frames

ARs almost always placed on a call stack



36

 Storage Options

Global

Static storage

Available for lifetime of
program

Call Stack

In AR in call stack

(stack-allocated)

Available whilst function

active (called but not
returned)

Heap

In heap (heap-

allocated)

Available until

deallocated (manually or
via garbage collection)



37

 Lifetime Issues

 Lifetime too short
reads return other value

writes overwrite other value

resource state incorrect, e.g., file handle closed

can cause security problems

 Lifetime too long

uses too much memory (memory leak)

too late in freeing other resources / finalization

can cause vulnerability to denial of service attacks



38

 Control Links

 How should activation records be connected?

Some systems, e.g., 32-bit x86, use control links

Control link in each AR points to previous AR

Control links provide linked list / stack view of ARs

ebp register points to AR for most recently called function



39

 Call Stack of Activation Records

Call stack of ARs allows
fast allocation of fresh AR on function call

fast deallocation of AR on function return

Contrast with heap allocation

Stack discipline ensures ordering of AR
(call f) allocate AR for f

(call g) allocate AR for g

(return from g) deallocate AR for g

(return from f) deallocate AR for f



40

 Call Stacks in Multi-Threaded Applications

 How should we maintain activation records in multi-threaded applications?

Each thread needs a separate call stack

Calls and returns in separate threads are independent



41

 Heap Allocation

Heap allocation can use any allocation pattern (not strict like stack discipline)

For example, allocate M bytes  allocate N bytes  deallocate M bytes  deallocate

N bytes

Allocations may be long-lived, others short-lived

Gives freedom, but more costly than call stack



42

 Common Problems

PLs with garbage collection

Java, Scala, C#, Python, Ruby, JS, Scheme, etc.
Lifetime too long (not GCed)

PLs with manual memory management
C, C++

Pointers to storage whose lifetime has ended

Dangling pointers to an old AR

Dangling pointers to free d heap memory (use after free)

Double free ing of heap memory



43

 Dangling Pointers: Stack

 What is wrong with this program?

#include <stdio.h>
#include <stdlib.h>

int *f (int x) {
 int y = x;
 return &y;
}

int main (void) {
 int *p = f (1);
 printf ("*p = %d\n", *p);
 return 0;
}

Compile warning
$ gcc -o ar ar.c
ar.c: In function ‘f’:
ar.c:6:3: warning: function returns address of local variable
 [enabled by default]

$./ar
*p = 1



44

 Dangling Pointers

Static analysis tools can help

$ valgrind ./ar
==5505== Memcheck, a memory error detector
==5505== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==5505== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==5505== Command: ./ar
==5505==
==5505== Conditional jump or move depends on uninitialised value(s)
==5505== at 0x4E7C1A1: vfprintf (vfprintf.c:1596)
==5505== by 0x4E85298: printf (printf.c:35)
==5505== by 0x400536: main (in /tmp/ar)
==5505==
==5505== Use of uninitialised value of size 8
==5505== at 0x4E7A49B: _itoa_word (_itoa.c:195)
==5505== by 0x4E7C4E7: vfprintf (vfprintf.c:1596)
==5505== by 0x4E85298: printf (printf.c:35)
==5505== by 0x400536: main (in /tmp/ar)
==5505==
==5505== Conditional jump or move depends on uninitialised value(s)
==5505== at 0x4E7A4A5: _itoa_word (_itoa.c:195)
==5505== by 0x4E7C4E7: vfprintf (vfprintf.c:1596)
==5505== by 0x4E85298: printf (printf.c:35)
==5505== by 0x400536: main (in /tmp/ar)
==5505==

*p = 1
==5505==
==5505== HEAP SUMMARY:
==5505== in use at exit: 0 bytes in 0 blocks
==5505== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==5505==
==5505== All heap blocks were freed -- no leaks are possible
==5505==
==5505== For counts of detected and suppressed errors, rerun with: -v
==5505== Use --track-origins=yes to see where uninitialised values come from
==5505== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 2 from 2)



45

 Dangling Pointers: Heap

 What is wrong with this program?

#include <stdio.h>
#include <stdlib.h>

int *f (int x) {
 int *result = (int *) malloc (sizeof (int));
 *result = x;
 return result;
}

int main (void) {
 int *p = f (1);
 printf ("*p = %d\n", *p);
 return 0;
}

Program compiles

$ gcc -Wall -o ar ar.c && ./ar
*p = 1

but...



46

 Dangling Pointers: Heap

$ valgrind ./ar
==10962== Memcheck, a memory error detector
==10962== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==10962== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==10962== Command: ./ar
==10962==
*p = 1
==10962==
==10962== HEAP SUMMARY:
==10962== in use at exit: 4 bytes in 1 blocks
==10962== total heap usage: 1 allocs, 0 frees, 4 bytes allocated
==10962==
==10962== LEAK SUMMARY:
==10962== definitely lost: 4 bytes in 1 blocks
==10962== indirectly lost: 0 bytes in 0 blocks
==10962== possibly lost: 0 bytes in 0 blocks
==10962== still reachable: 0 bytes in 0 blocks
==10962== suppressed: 0 bytes in 0 blocks
==10962== Rerun with --leak-check=full to see details of leaked memory
==10962==
==10962== For counts of detected and suppressed errors, rerun with: -v
==10962== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)



47

 Dangling Pointers: Heap

 What is wrong with this program?

#include <stdio.h>
#include <stdlib.h>

int *f (int x) {
 int *result = (int *) malloc (sizeof (int));
 *result = x;
 return result;
}

int main (void) {
 int *p = f (1);
 free (p);
 printf ("*p = %d\n", *p);
 return 0;
}

Program compiles

$ gcc -Wall -o ar ar.c && ./ar
*p = 0

but...



48

 Dangling Pointers: Heap

$ valgrind ./ar
==13594== Memcheck, a memory error detector
==13594== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==13594== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==13594== Command: ./ar
==13594==
==13594== Invalid read of size 4
==13594== at 0x4005D2: main (in /tmp/ar)
==13594== Address 0x51f0040 is 0 bytes inside a block of size 4 free'd
==13594== at 0x4C2A82E: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==13594== by 0x4005CD: main (in /tmp/ar)
==13594==
*p = 1
==13594==
==13594== HEAP SUMMARY:
==13594== in use at exit: 0 bytes in 0 blocks
==13594== total heap usage: 1 allocs, 1 frees, 4 bytes allocated
==13594==
==13594== All heap blocks were freed -- no leaks are possible
==13594==
==13594== For counts of detected and suppressed errors, rerun with: -v
==13594== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 2 from 2)



49

 Summary

Scope: how an identifier refers to a memory location

Static scope: closest lexical appearance in source code

Dynamic scope: closest activation record

Lifetime: how long a memory location is available

Dangling pointers: point to freed memory



50

