CSC 347 - Concepts of Programming Languages

Folds

Instructor:; Stefan Mitsch

6 Learning Objectives

© How to combine collection elements into an aggregate result?

e Understand folds

@ Exercise: Sum the Elements of a List

© Express in an imperative style

Java Scala

int sum (List<Int> xs) {
int result = 0;

for (int i = 0; i < xs.length; i++)

def sum (xs:List[Int]) : Int =
var result = 0

. for 1 <— 0 until xs.length do
result += xs.get(i); result = result + xs(i)
return result;

}

@ Exercise: Sum the Elements of a List

© Express in a functional style

def sum (xs:List[Int])
case Nil = 0
case y::ys => vy + sum (ys)

val xs = List(11,21,31)
sum (xs)

: Int = xs match

sum(11::21::31::Nil)

sum(11::21::31::Nil)

11 + sum(21::31::Nil)

11 + (21 + sum(31::Nil))

11 + (21 + (31 + sum(Nil)))
11 + (21 + (31 + 0))

11 + (21 + 31)

11 + 52

63 = (11 + (21 + (31 + 9)))

@ Exercise: Sum the Elements of a List

© \With a different zero element

def sum (xs:List[Int], z:Int = 0)

case Nil = 7
case y::ys =>y + sum (ys, z)

val xs = List(11,21,31)
sum (xs)

: Int = xs match

sum(11::21::31::Nil)

sum(11::21::31::Nil, 0)

11 + sum(21::31::Nil, 0)

11 + (21 + sum(31::Nil, 0))

11 + (21 + (31 + sum(Nil, 0)))
11 + (21 + (31 + 0))

11 + (21 + 31)

11 + 52

63 = (11 + (21 + (31 + 0)))

@ Exercise: Sum the Elements of a List

© Sum of elements in a list computing forward

def sum (_>1<s:List[Int], z:Int = @) : Int = xs match sum(11: 21::31: :Nil)
iiiﬁiys;iim,ws,24.w ——> sum(11::21::31::Nil, Q)
. ——> sum(21::31::Nil, 11)
\;%)(()S‘;S; List(11,21,31) -~ cum(31: :Nil, 32)
——> sum(Nil, 63)
— =
——>
——>

——> 63 = (((0 + 11) + 21) + 31)

@ Folds

@ generalize the + operation

def sum (xs:List[Int], z:Int) : Int
xs match
case Nil => 7
case y::ys => sum (ys, z +vy)

val xs = List(11,21,31)
sum (xs, 0)

@ Folds

@ generalize the + operation

def foldLeft (xs:List[Int], z:Int, f:((Int,Int)=>Int)) : Int
xs match
case Nil => Z
case y::ys => foldLeft (ys, f(z,y), f)

val xs = List(11,21,31)
foldLeft (xs, 0, _+_)

e Folds

© Change the return type
def foldLeft (xs:List[Int], z:String, f:(String,Int)=>String) : String =
Xs match
case Nil => z

case y::ys => foldLeft (ys, f(z, y), f)

val xs = List(11,21,31)
foldLeft (xs, "™, _ + " " + _)

e Folds

© Changing the parameter type

def foldLeft (xs:List[List[Int]], z:Int, f:(Int,List[Int])=>Int)
Xs match
case Nil => Z
case y::ys => foldLeft (ys, f(z, y), f)

val xss = List(List(11,21,31),List(),List(41,51))
foldLeft (xss, 0, _ + _.length)

» Int

10

@ Folds

@ Abstracting the type
def foldLeft [Z,X] (xs:List[X], z:Z, f:((Z,X)=>Z))
xs match
case Nil => Z

case y::ys => foldLeft (ys, f(z,y), f)

val xs = List(11,21,31)
foldLeft (xs, "!", (z:String,x:Int) =>z + " " + Xx)

resl: String = ! 11 21 31

AN

11

e Fold Left vs. Fold Right

Fold Left

def foldLeft [Z,X] (xs:List[X], z:Z, f:((Z,X)=>Z))
xs match
case Nil = Z
case y::ys => foldLeft (ys, f(z,y), f)

val xs = List(11,21,31)
foldLeft (xs, "!", (z:String,x:Int) =>z + " " + x)

resl: String = ! 11 21 31

A

Fold Right

def foldRight [X,Z] (xs:List[X], z:Z, f:((X,Z)=>Z))
xs match
case Nil = Z
case y::ys => f (y, foldRight (ys, z, f))

val xs = List(11,21,31)
foldRight (xs, "!", (x:Int,z:String) =>x + " " + 2)

resl: String = 11 21 31 !

VAN

12

e Folds Builtin in Lists

e Scala List classhas fold methods (curried!)

xss.foldLeft (@) ((z,xs)=>z + xs.length)

13

e Fold Left vs. Fold Right

def foldLeft [Z,X] (xs:List[X], z:Z, f:((Z,X)=>Z)) : Z = xs match { def foldRight [X,Z] (xs:List[X], z:Z, f:((X,Z)=>Z))
case Nil => z case Nil => z
case y::ys => foldLeft (ys, f(z,y), f) case y::ys => f (y, foldRight (ys, z, f))
}

e foldLeft istail recursive: return foldLeft (ys, f(z, y))
o apply f tothe head and the accumulated result

o recursive call on the tail
o base case used with first element

e foldRight isrecursive into an argument:
o return f (y, foldRight (ys, z))

o recursive call on the talil
o apply f tothe head and result of recursion

o base case used with last element

: Z = xs match {

14

e Fold Left vs. Fold Right

def foldLeft [Z,X] (xs:List[X], z:Z, f:((Z,X)=>Z)) : Z = xs match def foldRight [X,Z] (xs:List[X], z:Z, f:((X,Z2)=>2))
case Nil = z
case y::ys => f (y, foldRight (ys, z, f))

case Nil => z
case y::ys => foldLeft (ys, f(z,y), f)

val xs = List(a, b, c)
foldLeft (xs, z, f) ===

f ,b)
foldRight(xs, z, f) === f(a, f(b, f(c,z

xs.foldLeft(z) (f)
f
/ \
f C
/ \
f b

/ \
z a

) C)
)))
xs.foldRight(z) (f)
f
/ \
a f
/ \
b f
/ \
C

y4

1 Z = xs match

15

e Folds are Universal

.foldLeft(0) (_+_)
.foldLeft(1) (_x_)
.foldLeft(false (_]]_
.foldLeft(true) (_&&)
. foldRight(ys)(_::)

def
def
def
def
def
def
def
def
def
def

sum
prod

or

and

append [X]
flatten [X]
length [X]
reverse [X]
map [X,Y]
filter [X]

(xs:
(xs:
(xs:
(xs:
(xs:
(xs:
(xs:
(xs:
(xs:
(xs:

List[Int])
List[Int])

List [Boolean])
List[Boolean])

List[X]) (ys:

List [X])

List[List[X]])

List[X])
List[X])
List [X],
List[X],

Lots of examples

f: X=>Y)
f: X=>Boolean)

Tutorial on universality of folds

XS
XS
XS
XS
XS

XS,
XS,
XS.
XS,
XS.

foldLeft(Nil:List[X])
foldLeft(0) ((z,x)=>z+
foldRight(Nil:List[X]
foldRight (Nil:List[Y]
foldRight (Nil:List [X]

(_
1)
) (
) (
) (

i)

(
.f:
(

X,2s)=>zs:::List(x))

(_)::)

x,zs)=>if f(x) then x:

:zs else zs)

https://oldfashionedsoftware.com/2009/07/30/lots-and-lots-of-foldleft-examples
https://www.cs.nott.ac.uk/~pszgmh/bib.html#fold

Summary

e Folds are universal functions to combine list elements into an aggregate result
o foldRight folds from the right (zero element combined with last element)

e foldLeft folds from the left (zero element combined with list head)

17

