
CSC 347 - Concepts of Programming Languages

Methods and Functions: Currying

Instructor: Stefan Mitsch

1

 Learning Objectives

 How are methods in object-oriented programming and functions in functional

programming related?

Understand the difference between methods and functions in Scala

Understand the difference tupled and curried definitions

Understand partial application



2

 Functional Programming

We say that functions are first-class if they can be
declared within any scope,

passed as arguments to other functions, and

returned as results of functions.

Functions foreach , map , filter are higher-order functions

they take a function as argument
Also common: return a function as the result



3

 Paired Methods

def add1(x:Int, y:Int) = x+y
add1(11, 21)

add1: (x: Int, y: Int)Int
res1: Int = 32

This is the usual style of methods that take multiple arguments

It is a method that

Takes a pair of Int s

Returns an Int



4

 Curried Methods

def add2(x:Int)(y:Int) = x+y
add2(11)(21)

add2: (x: Int)(y: Int)Int
res2: Int = 32

This is a curried definition

It is a method that

Takes an Int

Returns a method of type (y:Int)Int Not to be confused with the function Int=>Int

So together the type of the method is add2: (x:Int)(y:Int)Int Not to be confused with

the function Int=>Int=>Int



5

https://en.wikipedia.org/wiki/Currying

 Functions

Scala has first-class support for both functions and methods

Method

def plus (x:Int, y:Int) = x+y
plus(1,2)

Function

val plus = (x:Int, y:Int) => x+y
plus(1,2)



6

 Functions

val add3 = (x:Int, y:Int) => x+y
add3(11, 21)

add3: (Int, Int) => Int = $$Lambda$4576/0x00000008018d1840@6ae4d2ad
res3: Int = 32

This is a function that
Takes a pair of Int s

Returns an Int



7

 Curried Functions

val add4 = (x:Int) => (y:Int) => x+y
add4(11)(21)

add4: Int => (Int => Int) = $$Lambda$...
res4: Int = 32

This is a curried definition

It is a function that
Takes an Int

Returns a function of type Int=>Int



8

https://en.wikipedia.org/wiki/Currying

 Curried Methods

def add5(x:Int) = (y:Int) => x+y
add5(11)(21)

add5: (x: Int)Int => Int
res5: Int = 32

You can mix the notations

This is a method that

Takes an Int

Returns a function of type Int=>Int



9

 Functions vs. Methods

def add1(x:Int, y:Int) = x+y
def add2(x:Int)(y:Int) = x+y
val add1f = add1 _
val add2f = add2 _

add1: (x: Int, y: Int)Int
add2: (x: Int)(y: Int)Int
add1f: (Int, Int) => Int = $$Lambda$...
add2f: Int => (Int => Int) = $$Lambda$...

Another use of wildcard operator _
don't care pattern

anonymous function expression



10

 Partial Application

val add4 = (x:Int) => (y:Int) => x+y
def add5(x:Int) = (y:Int) => x+y

val add4p = add4(11)
val add5p = add5(11)

val r4 = add4p(21)
val r5 = add5p(21)

add4: Int => (Int => Int) = $$Lambda$
add5: (x: Int)Int => Int

add4p: Int => Int = $$Lambda$
add5p: Int => Int = $$Lambda$

r4: Int = 32
r5: Int = 32



11

 Partial Application

def add1(x:Int, y:Int) = x+y
def add2(x:Int)(y:Int) = x+y
val add3 = (x:Int, y:Int) => x+y
val add4 = (x:Int) => (y:Int) => x+y
def add5(x:Int) = (y:Int) => x+y

val add1p = add1(11, _) /* x=>add1(11, x) */
val add2p = add2(11)(_) /* x=>add2(11)(x) */
val add3p = add3(11, _) /* x=>add3(11, x) */
val add4p = add4(11)
val add5p = add5(11)
val fs = List(add1p, add2p, add3p, add4p, add5p)
for f <- fs yield f(21)

fs: List[Int => Int] = List($$Lambda$,$$Lambda$,$$Lambda$,$$Lambda$,$$Lambda$)
res1: List[Int] = List(32, 32, 32, 32, 32)



12

 Functions and Methods

def a (x:Int) = x + 1;
val b = (x:Int) => x + 1;
val c = new Function[Int,Int] {
 def apply(x:Int) = x + 1
}
val d : PartialFunction[Any, Int] = {
 case i: Int => i + 1
}

val fs = List(a,b,c,d)
for f <- fs yield f(4)

fs: List[Int => Int] = List($$Lambda$, $$Lambda$, <function1>, <function1>)
res1: List[Int] = List(5, 5, 5, 5)

What's going on here?

Functions vs Methods



13

https://jim-mcbeath.blogspot.com/2009/05/scala-functions-vs-methods.html

 Functions and Methods

def defines a method with explicit parameter types

=> defines a function with inferable parameter types

Functions are objects with method apply
Function e:X=>Y gets compiled to an object

object e:
 def apply(x:X) : Y = ...

Function application e(args) is method invocation e.apply(args)



14

 Summary

Tupled definitions: functions with multiple arguments

Curried definitions: a family of single-argument functions

In Scala, functions are objects with an apply method

Partial application creates new functions



15

