
CSC 347 - Concepts of Programming Languages

Scala Introduction

Instructor: Stefan Mitsch

1

 Learning Objectives

 How to combine multiple programming paradigms in a single language?

Understand Scala basic syntax

Understand functional programming in Scala

Understand lists in Scala

Revisit recursion in Scala



2

 Scala

Functional and object-oriented PL

Java + ML + more

Scalable Component Abstractions

Compiles to JVM

Interop: Scala calls Java; Java calls Scala

Examples

Twitter/X Scala School

Apache Spark (Scala, Java, Python, R)

Chicago Scala Meetup



3

https://lampwww.epfl.ch/~odersky/papers/ScalableComponent.pdf
https://twitter.github.io/scala_school/
https://spark.apache.org/
https://www.meetup.com/chicagoscala/

 Scala

Scala has a REPL like Scheme

Boolean literals: false || true

Numeric literals: 1 + 2

String literals: ("hello" + " " + "world").length

Use of Java's libraries

val dir = java.io.File ("/tmp")
dir.listFiles.filter (f => f.isDirectory && f.getName.startsWith ("c"))

With explicit nulls enabled:

val dir = java.io.File ("/tmp")
dir.listFiles.nn.map(_.nn).filter (f => f.isDirectory && f.getName.nn.startsWith ("c"))



4

https://dotty.epfl.ch/3.0.0/docs/reference/other-new-features/explicit-nulls.html

 Everything is an Object

5:Int is an object of type Int with methods: 5.toDouble

Methods can have symbolic names (see scala.Int): 5.+ (6)

scala.runtime.RichInt adds more methods: 5.max (6)

Any unary function e1.f(e2) can be written as e1 f e2

5 + 6 is 5.+ (6)

5 max 6 is 5.max (6)



5

https://www.scala-lang.org/api/current/scala/Int.html
https://www.scala-lang.org/api/current/scala/runtime/RichInt.html

 Scala Type Checking

Scala performs static type checking
def f () = 5 - "hello" // rejected by type checker

REPL prints types of expressions

Java type hierarchy is embedded in
Scala

Java primitive types are Scala
value types

Java reference types are Scala

reference types

java.lang.Object is

scala.AnyRef



6

 Mutable and Immutable Variables

Mutable Variables

Java

int x = 10; // declare and initialize x
x = 11; // assignment to x OK

C

int x = 10; // declare and initialize x
x = 11; // assignment to x OK

Scala

var x = 10 // declare and initialize x
x = 11 // assignment to x OK

Immutable Variables

Java
final int x = 10; // declare and initialize x
x = 11; // assignment to x fails
// error: cannot assign a value to final variable x

C
const int x = 10; // declare and initialize x
x = 11; // assignment to x fails
// error: assignment of read-only variable ‘x’

Scala
val x = 10 // declare and initialize x
x = 11 // assignment to x fails
// error: reassignment to val



7

 Expression Sequencing

C Expressions

(e_1, e_2, ..., e_n)

C Statements

{
 s_1;
 s_2;
 ...
 s_n;
}

Scheme Expressions

(begin e_1 e_2 ... e_n)

Block-like format

(begin
 e_1
 e_2
 ...
 e_n
)

Scala Expressions

{e_1; e_2; ...; e_n}

Semicolons optional

{
 e_1
 e_2
 ...
 e_n
}



8

 Methods

Parameters require type annotations

def plus (x:Int, y:Int) : Int = x + y
def times (x: Int, y:Int) = x * y

Return types

can often be inferred

but are required for recursive methods

Body of a method is an expression; its value is returned



9

 Methods

Conditional expressions

def fact (n:Int) : Int = if n <= 1 then 1 else n * fact (n - 1)

Compound expressions for side-effects

def fact(n:Int) : Int =
 println("called with n=%d".format(n))
 if n <= 1 then
 println("no recursive call")
 1
 else
 println("making recursive call")
 n * fact(n - 1)

Syntax like C statements, but are expressions!



10

 Methods vs. Fields

def can be used non-parameterized: def x = 5 ; non-strict, executed every time

val declares a variable: val x = 5 ; strict, initialized once

lazy val : memoized def , initialized on demand

Scala

class C:
 val x = 1
 lazy val y = 1 + 2
 def z = 1

Java

public class C {
 private final int x = 1;
 private Integer y = null;
 public int x() { return x; }
 public int y() {
 if (y == null) y = 1 + 2;
 return y;
 }
 public int z() { return 1; }
}



11

 Mutable Fields

Scala

class C:
 val x = 1
 var z = 1

Java

public class C {
 private final int x = 1;
 private int z = 1;
 public int x() { return x; }
 public int z() { return z; }
 public void z_$eq(int z) { this.z = z; }
}



12

 Structured Data

Tuples: fixed number of heterogeneous items (1, "hello")

Lists: variable number of homogeneous items
List(1, 2, 3) or 1 :: 2 :: 3 :: Nil

Immutable and mutable variants

Pattern matching to decompose structured data into its components



13

 Scala Collections

Scala collections guide

scala.collection

scala.collection.immutable

scala.collection.mutable

java.util is available

Scala has arrays Array[Int]



14

https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://www.scala-lang.org/api/current/scala/collection.html
https://www.scala-lang.org/api/current/scala/collection/immutable.html
https://www.scala-lang.org/api/current/scala/collection/mutable.html
https://docs.oracle.com/javase/8/docs/api/java/util/package-summary.html

 Mutability: Fields vs. Data

Field mutability is different from data mutability

Java mutable linked list by default

List<Integer> xs = new List<> ();
final List<Integer> ys = xs; // aliasing
xs.add (4); ys.add (5); // list is mutable through both references
xs = new List<> (); // reference is mutable
ys = new List<> (); // fails; reference is immutable

Scala immutable linked list by default

var xs = List (4, 5, 6)
val ys = xs
xs (1) = 7; ys (1) = 3 // fails; list is immutable
xs = List (0) // reference is mutable
ys = List () // fails; reference is immutable



15

 Tuples

 Tuples are immutable heterogeneous complex data items

Scala Tuples

val p : (Int, String) = (5, "hello")
val x : Int = p(0)

Java Pair Class

public class Pair<X,Y> {
 final X x;
 final Y y;
 public Pair (X x, Y y) { this.x = x; this.y = y; }
}

Pair<Integer, String> p = new Pair<> (5, "hello");
int x = p.x;



16

 Pattern Matching

 Pattern matching branches and binds pattern variables

Pattern Matching

def a(p:(Int,Int)) = p match
 case (x,y) => x+y

Decomposition with Projections

def b(p:(Int,Int)) =
 if p==null then throw MatchError(p)
 val x = p(0)
 val y = p(1)
 x + y



17

 Linked Lists

Scala's :: is an infix cons operator for lists

11 21 4131

Scheme

(define xs (cons 11 (cons 21 (cons 31 (cons 41 ())))))

Scala

val xs = 11 :: (21 :: (31 :: (41 :: Nil))) // List(11, 21, 31, 41)
val xs = 11 :: 21 :: 31 :: 41 :: Nil // right associative
// method-call style, not encouraged
val xs = Nil.::(41).::(31).::(21).::(11)



18

 Operator cons : Scheme vs. Scala

Scheme Scala

Unlike Scheme cons , Scala's :: requires a list as its right-hand side argument

(define x (cons 11 "hello")) // Scheme val x = 11 :: "hello" // not Scala, right-hand side of :: must be a list
val x = (11, "hello") // Scala tuples for heterogeneous cons cells

Scala Nil is the empty list, shorthand for List()

(let (emptylist ())) val emptylist = Nil // = List()



19

 List Constructors

Scheme

(list 1 2 (+ 1 2))

Scala

List (1, 2, 1 + 2)
1 :: 2 :: (1+2) :: Nil



20

 List Projections

Projections extract components of a list: often called head and tail

Scheme

(car xs)
(cdr xs)

Scala

xs.head
xs.tail



21

 Pattern Matching

Pattern matching branches and binds pattern variables

Pattern Matching

def f(xs: List[Int]) = xs match
 case Nil => "List is empty"
 case y::ys => "List is non-empty, head is %d".format (y)

Conditionals with Type Tests

def g(xs: List[Int]) =
 if xs == Nil then "List is empty"
 else if xs.isInstanceOf[::[Int]] then
 val zs = xs.asInstanceOf[::[Int]]
 val y : Int = zs.head
 val ys : List[Int] = zs.tail
 "List is non-empty, head is %d".format (y)
 else throw MatchError(xs)



22

 Pattern Matching

Nested patterns: patterns can include other patterns

def f (xs: List[(Int,String)]) = xs match
 case Nil => "List is empty"
 case _::Nil => "List has one element"
 case _::(x,_)::_ => s"The second int is ${x}"

val zs = List ((11,"dog"), (21,"cat"), (31,"pig"))
f(zs)

Found in ML, Haskell, Rust, Swift, and coming to Java

Wildcard operator _ means don't care



23

 Pattern Matching

Pattern matching vs. Projections

Pattern Matching

def f (xs: List[(Int,String)]) = xs match
 case Nil => "List is empty"
 case _::Nil => "List has one element"
 case _::(x,_)::_ => s"The second int is ${x}"

val zs = List ((11,"dog"), (21,"cat"), (31,"pig"))
f(zs)

Decomposition with Projections

def f (xs: List[(Int,String)]) =
 if xs == Nil then "List is empty"
 else if xs.tail == Nil then "List has one element"
 else s"The second int is ${xs.tail.head(0)}"

val zs = List ((11,"dog"), (21,"cat"), (31,"pig"))
f(zs)



24

 Pattern Matching Exercise: List Operations

Implement simple list operations by pattern matching

isEmpty head tail

Many list operations are builtin:

List (1, 2, 3).head

List (1, 2, 3).tail

List (1, 2, 3).isEmpty



25

 Recursion

Imperative programming typically favors
mutable data

iteration using loops (while , for)

Functional programming typically favors

immutable data

iteration using recursion

Recursion requires efficient method calls

State of computation

Imperative: loop counters to access "global" mutable data

Recursion: arguments to recursive call



26

 Exercise: Recursive Length of List

Imperative

def length (xs:List[Int]) : Int =
 var length : int = 0
 var current = xs;
 while current != Nil do
 length = length + 1
 current = current.tail
 length

Recursive with Pattern Matching

def length (xs:List[Int]) : Int = xs match
 case Nil => 0
 case _::ys => 1 + length (ys)

With parametric polymorphism

def length [X] (xs:List[X]) : Int = xs match
 case Nil => 0
 case _::ys => 1 + length (ys)



27

 Recursion

Imperative Iteration

length (List (1, 2, 3))
--> current = 1::(2::(3::Nil)), length = 0
--> current = 2::(3::Nil), length = 1
--> current = 3::Nil, length = 2
--> current = Nil, length = 3

The state of the computation is in

mutable variables

Recursive Iteration

length (List (1, 2, 3))
--> length (1::(2::(3::Nil)))
--> 1 + length (2::(3::Nil))
--> 1 + (1 + length (3::Nil))
--> 1 + (1 + (1 + length (Nil)))
--> 1 + (1 + (1 + 0))
--> 1 + (1 + 1)
--> 1 + 2
--> 3

The state of the computation is the

expression



28

 Appending Lists

Scheme

(define (append xs ys)
 (if (equal? xs ())
 ys
 (cons (car xs) (append (cdr xs) ys))))

Scala

def append [X] (xs:List[X], ys:List[X]) : List[X] = xs match
 case Nil => ys
 case z::zs => z :: (append (zs, ys))

append (1::(2::Nil), 3::Nil)
--> 1::(append (2::Nil, 3::Nil)) // z = 1, zs = 2::Nil
--> 1::(2::(append (Nil, 3::Nil))) // z = 2, zs = Nil
--> 1::(2::(3::Nil)) // z = 2, zs = Nil

Cons cells created with 1 and 2 in head

Cons cell 3::Nil is reused (shared)

New list, but second part is shared!



29

 Appending Lists

List class has builtin method :::

scala> ((1 to 5).toList) ::: ((10 to 15).toList)
res1: List[Int] = List(1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15)



30

 Recursion

What does f do?

def f [X] (xs:List[X]) : List[X] = xs match
 case Nil => Nil
 case y::ys => f (ys) ::: List (y)

f (Nil) f (3::Nil) f (2::3::Nil) f (1::2::3::Nil)

Conclusion: f is reverse



31

 Summary

Scala combines functional and object-oriented programming

Builtin support for tuples

Pattern matching to decompose lists, tuples, and objects into their components

Favors immutable data and recursion over mutable data and iteration



32

