CSC 347 - Concepts of Programming Languages

Scheme

Instructor:; Stefan Mitsch

@ Learning Objectives

e Transition to functional programming
e Understand expressions in Scheme
e Understand cons cells and lists in Scheme

e Revisit recursion

@ Lisp and Scheme

Lisp (LISt Processor)

Influential programming language from the 1950s

Originally motivated by logic [Al applications

Pioneered many PL concepts:
o automatic garbage collection

o first-class, higher-order, nested functions
o read-eval-print loop including runtime compilation with "eval"
o sophisticated macro system

o multiple dispatch [multi-methods

@ Lisp and Scheme

e Dialects: Common Lisp, Scheme, Clojure, Racket
o We will use Scheme

e Sample Scheme function to find the length of a list

; This (recursive) function calculates the length of a linked list.
(define (length 1)
(if (equal? 1 ())
0
(+ 1 (length (cdr 1)))))

e Lots of Infuriating and Silly Parentheses

https://acronyms.thefreedictionary.com/LISP

@ Running Scheme

e Use repl.it

e On MacQOS, use homebrew: brew search scheme and brew search chicken

https://repl.it/languages/scheme
https://brew.sh/

e Literals

e Number literal: 5
e String literal: "hello world"
e Symbol 'helloworld

e Arithmetic

o Arithmetic expressions use prefix notation
; (1 +2) * 3 would be written in Scheme as follows
(x (+ 1 2) 3)

o Parentheses are required for each operator

o Benefit: operator precedence not necessary
o But careful with operator associativity; try out

(+ 10 5 2)
(- 10 5 2)

e Operator Terminology

e Prefix notation: operator before arguments: + 1 2
e |nfix notation: operator between arguments: 1 + 2

o Postfix notation: operator after arguments: 1 2 +

e Functions

e Define a function square with parameter n

(define (square n) (x n n))

e Invoke the square function: (square 5)

e |[nvoke the square functiontwice: (square (square 5))

e Defining Functions

e General formis
(define (f param_1 param_2 ... param_m)
ele?2 ... e_n)

e Takes m arguments

e Body of function is a sequence of expressions
e e 1, e 2,.. e_n-1 evaluated for side effect
e e_n isevaluated and its result is returned

e No return keyword, no statements, just expressions

Optional keyword begin

(define (f param_1 param_2 ... param_m)
(begin e 1 e 2 ... e_n))

10

e Invoking Functions

e |[nvoke function f with m arguments: (f e_1 e 2 ...

e Parentheses are required: (square 5)

e Try in Scheme REPL: square 5

e m)

11

e Evaluation Order

e Expression (f M N) is evaluated by
i. Evaluating expression M to value U

ii. Evaluating expression N to value V
iii. Invoking function f with values U and V

e define is aspecial form, not a function, so it does not obey this convention

12

e Booleans and Conditionals

o Operator = tests number equality

(define (zero n) (= n 0))

e Boolean values are #t and #f
e Conditional if is a non-strict special form

(define (safe-divide m n)
(if (= n 0)
"divide by zero"
(/ mn)))

13

e Recursive Functions

e Recursive functions are common in Scheme
e Factorial using conditional expressions

(define (fact n)
(if (<= n 1)
1
(x n (fact (- n 1)))))

o Recall C factorial using conditional expressions

int fact (int n) {
return (n <= 1) 2 1 : n x fact (n - 1);

}

14

e Cons Cells

A cons cellis a pair of two pieces of data

Pair of numbers: (cons 1 2)

Pair of strings: (cons "hello" "world")

e Pair of a number and a string: (cons 1 "world")

Functions car and cdr extract components

(car (cons 1 "world"))
(cdr (cons 1 "world"))

15

e Cons Cells for Linked Lists

Y
Y
Y

11 2 31 41

e Cons cells (pairs) are used to represent linked lists

(let ((mylist (cons 11 (cons 21 (cons 31 (cons 41 ())))))))

e car position for elements: (car mylist) is 11

e cdr position for next conscell: (cdr mylist) is (cons 21 (cons 31 (cons 41
())))

e Cons Cells for Linked Lists

e Linked lists built up using () and cons
e Empty list: ()
e Singleton list containing 41 only: (cons 41 ())

e List containing 11,21, 31,41: (cons 11 (cons 21 (cons 31 (cons 41 ()))))

Lists can be heterogeneous: (cons 11 (cons "hello" ()))

Cons cells can create more complex data structures:

(cons
(cons 11 (cons 12 ()))
(cons 21 ())

)

e Syntactic Sugar for Lists

e Quotation quote special form prevents evaluation

(quote (3))
(quote (1 2 3))

e Operator ' is shorthand for quote
'(3)
'(1 2 3)

e Function 1list evaluates args, puts results in a list

(list 3)
(list 1 2 3)
(list 1 2 (+ 1 2))

18

e Equality Testing for Lists

© Different ways of comparing for equality?

e Pointer equality compares two pointers
o Structural equality traverses two structures
e eq? forpointer equality: (eq? (cons 1 (cons 2 (cons 3 ()))) '(1 2 3))

e equal? for structural equality: (equal? (cons 1 (cons 2 (cons 3 ()))) '(1 2
3))

19

e Recursive Functions on Lists

© How do we manipulate complex data structures one element at a time?

o Compute length of linked list recursively

(define (length 1)
(if (equal? 1 ())
0
(+ 1 (length (cdr 1)))))

e Call: (length '(5 6 7 8 9))

20

@ Evaluate a Recursive Function

Evaluate (length '(5 6 7))

A4

(if (equal? '(5 6 7) '()) @ (+ 1 (length (cdr '(56 7)))))

> (+ 1 (length (cdr '(5 6 7))))
> (+ 1 (length '(6 7)))

> (+ 1 (+ 1 (length '(7))))

> (+1 (+1 (+1 (length '()))))
> (+1(+1(+10)))

> (+1(+11))

> (+12)

>

21

e Dynamic Types

(symbol? 'x) (pair? '(1 . 2))

(number? 1) (pair? '(1))

(boolean? #t) s (pair? '())

(string? "x") » (list? '(1 . 2))

(procedure? (lambda (x) (+ x 1))) (list? '(1))
(list? '())

e List only has one structure type: the pair.

e A non-empty list is just a special type of pair, with a terminal

e S-Expressions

e Pairs are a kind of Symbolic-Expression (S-Exp)

e S-Exps also include non-structured values, including numbers, booleans, strings,
symbols and ' ()

e Parsing a scheme program results in an S-Exp, which is then sentto eval for
evaluation

e (quote exp) causes exp to be parsed without evaluation, resulting in an S-Exp

23

e Read-Eval-Print Loop (REPL)

e Quoting delays evaluation

(+ 1 2)

"(+ 1 2)

(cons '+ '(1 2))
(car '"(+ 1 2))

e Function eval evaluates an expression

(eval (cons '+ '(1 2)))
(define (add-all 1) (eval (append '(+) 1)))
(add-all '(1 2 3))

e Function read reads an expression

(read)
(eval (read))
(eval (append '(+) (read)))

24

Summary

o See Worksheet 1 for how to install the SISC Scheme interpreter

e Books
o R.Kent Dybvig: The Scheme Programming Language, 4th Edition.

o Scheme Programming Wikibook
e Revised Reports on the Algorithmic Language Scheme
o Revised Report on the Algorithmic Language Scheme 1978
o RBbRS-Revised, 1998
o RBRS-Revised, 2007
o R7RS-Revised, 2013

https://www.scheme.com/tspl4/
https://en.wikibooks.org/wiki/Scheme_Programming
http://dspace.mit.edu/handle/1721.1/6283#files-area
https://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
hhttp://www.r6rs.org/final/r6rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf

