
CSC 347 - Concepts of Programming Languages

Scheme

Instructor: Stefan Mitsch

1

 Learning Objectives

Transition to functional programming

Understand expressions in Scheme

Understand cons cells and lists in Scheme

Revisit recursion



2

 Lisp and Scheme

Lisp (LISt Processor)

Influential programming language from the 1950s

Originally motivated by logic / AI applications

Pioneered many PL concepts:

automatic garbage collection

first-class, higher-order, nested functions

read-eval-print loop including runtime compilation with "eval"

sophisticated macro system

multiple dispatch / multi-methods



3

 Lisp and Scheme

Dialects: Common Lisp, Scheme, Clojure, Racket

We will use Scheme

Sample Scheme function to find the length of a list

; This (recursive) function calculates the length of a linked list.
(define (length l)
 (if (equal? l ())
 0
 (+ 1 (length (cdr l)))))

Lots of Infuriating and Silly Parentheses



4

https://acronyms.thefreedictionary.com/LISP

 Running Scheme

Use repl.it

On MacOS, use homebrew: brew search scheme and brew search chicken



5

https://repl.it/languages/scheme
https://brew.sh/

 Literals

Number literal: 5

String literal: "hello world"

Symbol 'helloworld



6

 Arithmetic

Arithmetic expressions use prefix notation

; (1 + 2) * 3 would be written in Scheme as follows
(* (+ 1 2) 3)

Parentheses are required for each operator

Benefit: operator precedence not necessary

But careful with operator associativity; try out

(+ 10 5 2)
(- 10 5 2)



7

 Operator Terminology

Prefix notation: operator before arguments: + 1 2

Infix notation: operator between arguments: 1 + 2

Postfix notation: operator after arguments: 1 2 +



8

 Functions

Define a function square with parameter n

(define (square n) (* n n))

Invoke the square function: (square 5)

Invoke the square function twice: (square (square 5))



9

 Defining Functions

General form is

(define (f param_1 param_2 ... param_m)
 e_1 e_2 ... e_n)

Takes m arguments

Body of function is a sequence of expressions

e_1 , e_2 , ..., e_n-1 evaluated for side effect

e_n is evaluated and its result is returned

No return keyword, no statements, just expressions

Optional keyword begin

(define (f param_1 param_2 ... param_m)
 (begin e_1 e_2 ... e_n))



10

 Invoking Functions

Invoke function f with m arguments: (f e_1 e_2 ... e_m)

Parentheses are required: (square 5)

Try in Scheme REPL: square 5



11

 Evaluation Order

Expression (f M N) is evaluated by
i. Evaluating expression M to value U

ii. Evaluating expression N to value V

iii. Invoking function f with values U and V

define is a special form, not a function, so it does not obey this convention



12

 Booleans and Conditionals

Operator = tests number equality

(define (zero n) (= n 0))

Boolean values are #t and #f

Conditional if is a non-strict special form

(define (safe-divide m n)
 (if (= n 0)
 "divide by zero"
 (/ m n)))



13

 Recursive Functions

Recursive functions are common in Scheme

Factorial using conditional expressions

(define (fact n)
 (if (<= n 1)
 1
 (* n (fact (- n 1)))))

Recall C factorial using conditional expressions

int fact (int n) {
 return (n <= 1) ? 1 : n * fact (n - 1);
}



14

 Cons Cells

A cons cell is a pair of two pieces of data

Pair of numbers: (cons 1 2)

Pair of strings: (cons "hello" "world")

Pair of a number and a string: (cons 1 "world")

Functions car and cdr extract components

(car (cons 1 "world"))
(cdr (cons 1 "world"))



15

 Cons Cells for Linked Lists

11 21 4131

Cons cells (pairs) are used to represent linked lists

(let ((mylist (cons 11 (cons 21 (cons 31 (cons 41 ())))))))

car position for elements: (car mylist) is 11

cdr position for next cons cell: (cdr mylist) is (cons 21 (cons 31 (cons 41

())))



16

 Cons Cells for Linked Lists

Linked lists built up using () and cons

Empty list: ()

Singleton list containing 41 only: (cons 41 ())

List containing 11, 21, 31, 41: (cons 11 (cons 21 (cons 31 (cons 41 ()))))

Lists can be heterogeneous: (cons 11 (cons "hello" ()))

Cons cells can create more complex data structures:

(cons
 (cons 11 (cons 12 ()))
 (cons 21 ())
)



17

 Syntactic Sugar for Lists

Quotation quote special form prevents evaluation

(quote (3))
(quote (1 2 3))

Operator ' is shorthand for quote

'(3)
'(1 2 3)

Function list evaluates args, puts results in a list

(list 3)
(list 1 2 3)
(list 1 2 (+ 1 2))



18

 Equality Testing for Lists

 Different ways of comparing for equality?

Pointer equality compares two pointers

Structural equality traverses two structures

eq? for pointer equality: (eq? (cons 1 (cons 2 (cons 3 ()))) '(1 2 3))

equal? for structural equality: (equal? (cons 1 (cons 2 (cons 3 ()))) '(1 2
3))



19

 Recursive Functions on Lists

 How do we manipulate complex data structures one element at a time?

Compute length of linked list recursively

(define (length l)
 (if (equal? l ())
 0
 (+ 1 (length (cdr l)))))

Call: (length '(5 6 7 8 9))



20

 Evaluate a Recursive Function

Evaluate (length '(5 6 7))



(if (equal? '(5 6 7) '()) 0 (+ 1 (length (cdr '(5 6 7)))))

(+ 1 (length (cdr '(5 6 7))))

(+ 1 (length '(6 7)))

(+ 1 (+ 1 (length '(7))))

(+ 1 (+ 1 (+ 1 (length '()))))

(+ 1 (+ 1 (+ 1 0)))

(+ 1 (+ 1 1))

(+ 1 2)

3
21

 Dynamic Types

(symbol? 'x)
(number? 1)
(boolean? #t)
(string? "x")
(procedure? (lambda (x) (+ x 1)))

(pair? '(1 . 2))
(pair? '(1))
; (pair? '())
; (list? '(1 . 2))
(list? '(1))
(list? '())

List only has one structure type: the pair.

A non-empty list is just a special type of pair, with a terminal



22

 S-Expressions

Pairs are a kind of Symbolic-Expression (S-Exp)

S-Exps also include non-structured values, including numbers, booleans, strings,
symbols and '()

Parsing a scheme program results in an S-Exp, which is then sent to eval for
evaluation

(quote exp) causes exp to be parsed without evaluation, resulting in an S-Exp



23

 Read-Eval-Print Loop (REPL)

Quoting delays evaluation

(+ 1 2)
'(+ 1 2)
(cons '+ '(1 2))
(car '(+ 1 2))

Function eval evaluates an expression

(eval (cons '+ '(1 2)))
(define (add-all l) (eval (append '(+) l)))
(add-all '(1 2 3))

Function read reads an expression

(read)
(eval (read))
(eval (append '(+) (read)))



24

 Summary

See Worksheet 1 for how to install the SISC Scheme interpreter

Books

R. Kent Dybvig: The Scheme Programming Language, 4th Edition.

Scheme Programming Wikibook

Revised Reports on the Algorithmic Language Scheme
Revised Report on the Algorithmic Language Scheme 1978

R5RS-Revised, 1998

R6RS-Revised, 2007

R7RS-Revised, 2013



25

https://www.scheme.com/tspl4/
https://en.wikibooks.org/wiki/Scheme_Programming
http://dspace.mit.edu/handle/1721.1/6283#files-area
https://www.schemers.org/Documents/Standards/R5RS/r5rs.pdf
hhttp://www.r6rs.org/final/r6rs.pdf
https://small.r7rs.org/attachment/r7rs.pdf

