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Functions over Lists

Last lecture, we looked at typed languages and Scala as a multi-paradigm language that com-
bines functional and object-oriented programming. In this lecture, we discuss functional pro-
gramming in more depth, again using Scala as an example. We start by inspecting an example
to print the elements of a list.

1 def p r i n t L i s t ( x s : L i s t [ I n t ] ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
4 p r i n t l n ( y ) / / c a n f o r m a t : p r i n t l n ( " 0 x % 0 2 x " . f o r m a t ( y ) )
5 p r i n t L i s t ( y s )
6
7 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
8 p r i n t L i s t ( x s )
9 / / 1 1 2 1 3 1

In the example above, we see two ways of printing the elements of the list (unformatted
vs. formatted).

What if we now want to apply some other function to every element of the list? The basic
setup of the recursive algorithm wouldn’t change, only the specific operation that we apply
at each element does. We can describe that abstract idea of processing every element with a
recursive algorithm that, in addition to the list being processed, takes a function to be applied
to each element as an argument.

1 def f o r e a c h ( x s : L i s t [ I n t ] , f : I n t => U n i t ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
4 f ( y )
5 f o r e a c h ( y s , f )
6
7 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
8 f o r e a c h ( x s , p r i n t l n )

Now it becomes easy to make variations.

1 def p r i n t H e x ( x : I n t ) = p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
2 f o r e a c h ( x s , p r i n t H e x )

But do we really care about the elements in the list? An additional improvement makes
the element type a type parameter of the method.
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1 def f o r e a c h [X] ( x s : L i s t [X ] , f : X=> U n i t ) : U n i t = x s match
2 c a s e N i l => ( )
3 c a s e y : : y s =>
4 f ( y )
5 f o r e a c h ( y s , f )

Finally, we may not even always want to define the functions that we apply to each ele-
ment. For this, Scala supports Lambda expressions (anonymous functions):

1 f o r e a c h ( x s , ( x : I n t ) => p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) ) )
2 f o r e a c h ( x s , p r i n t l n ( " 0 x %02 x " . f o r m a t ( _ ) ) )
3
4 / / a l s o p o s s i b l e
5 v a l p r i n t H e x = ( x : I n t ) => p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
6 f o r e a c h ( x s s , p r i n t L e n g t h )

We do not need to implement foreach ourselves, Scala collections provide it!
The examples above use both type and value parameters: type parameters are in square

brackets, whereas value parameters are in round brackets. All type parameters must be de-
clared before value parameters. Functions themselves are of function type: for example, X=
>Int is the type of a function taking an argument of type X and returns a result of type Int.
In Lambda expression, types are often unnecessary if Scala can infer them (type inference is
smarter on methods than functions).

List comprehensions. From mathematics, we might be familiar with set comprehensions
of the form

{(m,n) | m ∈ {0, . . . , 10} ∧ n ∈ {0, . . . , 10} ∧m ≤ n} .

List comprehensions of a similar form are included in many programming languages, such as
SETL, Haskell, Scala, and JavaScript.

Scala provides another builtin special syntax to express foreach using list comprehensions
(named for-expressions in Scala).

1 f o r x <− x s do p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )

We are now inspecting a (less-than-optimal) way of expressing imperative loops with our
foreach implementation, by using a variable in scope:

1 def sum ( x s : L i s t [ I n t ] ) : I n t =
2 var r e s u l t = 0
3 x s . f o r e a c h ( ( x : I n t ) => r e s u l t = r e s u l t + x )
4 r e s u l t

Later, we’ll see how folds provide a better way of expressing such ideas.
A note on equality: Java uses builtin operators for reference equality, and a method for

value equality; Scala has methods for both, the operator symbol method == for value equality
and method eq for reference equality.
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Transformers. A frequent operation on collections is the modification of elements in the
collection. To this end, transformers are functions to build a list of modified elements while
traversing a collection recursively (unlike above where we only print elements but do not ma-
nipulate them).

1 def t r a n s f o r m ( x s : L i s t [ I n t ] ) : L i s t [ S t r i n g ] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s => ( " 0 x %02 x " . f o r m a t ( y ) ) : : t r a n s f o r m ( y s )

A transformer is expected to take one cons cell as input and produce another cons cell as
output. Just like foreach , there is a builtin way of applying transformers to collections: map.

Scala again provides special notation to apply transformers in a for-expression:

1 f o r x <− x s do p r i n t l n ( " 0 x %02 x " . f o r m a t ( x ) )
2 / / i s c o m p i l e d t o x s . f o r e a c h ( x => p r i n t l n ( " 0 x % 0 2 x " . f o r m a t ( x ) ) )
3
4 f o r x <− x s y i e l d " 0 x %02 x " . f o r m a t ( x )
5 / / i s c o m p i l e d t o x s . map ( x => " 0 x % 0 2 x " . f o r m a t ( x ) )

Filtering. Often, we want to apply a function only to elements satisfying a certain condi-
tion, omitting the remaining elements in the output collection.

1 def f i l t e r [X] ( x s : L i s t [X ] , f : X=> B o o l e a n ) : L i s t [X] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s i f f ( y ) => y : : f i l t e r ( y s , f )
4 c a s e _ : : y s => f i l t e r ( y s , f )
5
6 v a l z s = ( 0 t o 7 ) . t o L i s t
7 f i l t e r ( z s , ( ( _ : I n t ) % 3 ! = 0 ) )

Again in special for-expression notation:

1 f o r z <− z s ; i f z % 3 ! = 0 y i e l d z
2 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 )
3
4 f o r z <− z s ; i f z % 3 ! = 0 y i e l d " 0 x %02 x " . f o r m a t ( z )
5 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 ) . map ( z => " 0 x % 0 2 x " .

f o r m a t ( z ) )
6
7 f o r z <− z s ; i f z % 3 ! = 0 do p r i n t l n ( " 0 x %02 x " . f o r m a t ( z ) )
8 / / c o m p i l e s t o z s . f i l t e r ( z => z % 3 ! = 0 ) . f o r e a c h ( z => p r i n t l n

( " 0 x % 0 2 x " . f o r m a t ( z ) ) )

1 def f l a t t e n [X] ( x s : L i s t [ L i s t [X ] ] ) : L i s t [X] = x s match
2 c a s e N i l => N i l
3 c a s e y : : y s => y : : : f l a t t e n ( y s )
4
5 v a l x s s = L i s t ( L i s t ( 1 1 , 2 1 , 3 1 ) , L i s t ( ) , L i s t ( 4 1 , 5 1 ) )

In the above implementation of flatten, we use operator ::: .
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Multiple iterators. For-expressions are quite general and can combine nested iterators in
a single pass.

1 v a l x s s = L i s t ( L i s t ( 1 1 , 2 1 , 3 1 ) , L i s t ( ) , L i s t ( 4 1 , 5 1 ) )
2 f o r x s <− x s s ;
3 x <− x s y i e l d ( x , x s . l e n g t h )
4 / / r e s u l t : L i s t [ ( I n t , I n t ) ] = L i s t ( ( 1 1 , 3 ) , ( 2 1 , 3 ) , ( 3 1 , 3 ) ,

( 4 1 , 2 ) , ( 5 1 , 2 ) )

We can also compute the cross product of independent iterators.

1 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
2 v a l y s = L i s t ( " a " , " b " )
3 f o r x <− x s ;
4 y <− y s y i e l d ( x , y )
5 / / r e s u l t : L i s t [ ( I n t , S t r i n g ) ] = L i s t ( ( 1 1 , a ) , ( 1 1 , b ) , ( 2 1 , a ) ,

( 2 1 , b ) , ( 3 1 , a ) , ( 3 1 , b ) )

Currying

We say that functions are first-class if they can be

– declared within any scope
– passed as arguments to other functions, and
– returned as results of functions.

Higher-order functions are functions that can take other functions as arguments (e.g.,
map etc.). Methods that take multiple arguments can be defined in the “usual” way with mul-
tiple formal arguments, or in a curried way as higher-order definitions that take one argument
at a time and produce methods that take the remaining arguments.

1 / / p a i r e d m e t h o d
2 def a d d 1 ( x : I n t , y : I n t ) = x+y
3 a d d 1 ( 1 1 , 2 1 )
4
5 / / c u r r i e d m e t h o d
6 def a d d 2 ( x : I n t ) ( y : I n t ) = x+y / / t a k e s an I n t , r e t u r n s m e t h o d o f

t y p e ( y : I n t ) : I n t
7 a d d 2 ( 1 1 ) ( 2 1 )
8
9 / / p a i r e d f u n c t i o n

10 v a l a d d 3 = ( x : I n t , y : I n t ) => x+y
11
12 / / c u r r i e d f u n c t i o n
13 v a l add4 = ( x : I n t ) => ( y : I n t ) => x+y / / t a k e s an I n t , r e t u r n s a

f u n c t i o n o f t y p e I n t => I n t
14
15 / / c a n mix n o t a t i o n s : m e t h o d r e t u r n s a f u n c t i o n
16 def a d d 5 ( x : I n t ) = ( y : I n t ) => x+y

Both paired and curried notation support partial function application:
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1 / / p a i r e d
2 v a l a d d 1 p = a d d 1 ( 4 , _ )
3 a d d 1 p ( 1 ) / / r e s u l t 5
4
5 / / c u r r i e d
6 v a l add4p = add4 ( 4 )
7 add4p ( 1 ) / / r e s u l t 5
8 add4p ( 2 ) / / r e s u l t 6

Functions and methods in Scala can also be created explicitly by instantiating the appro-
priate classes:

1 def a ( x : I n t ) = x + 1 ;
2 v a l b = ( x : I n t ) => x + 1 ;
3 v a l c = new F u n c t i o n [ I n t , I n t ] { def a p p l y ( x : I n t ) = x + 1 }
4 v a l d : P a r t i a l F u n c t i o n [ Any , I n t ] = { c a s e i : I n t => i + 1 }
5
6 v a l f s = L i s t ( a , b , c , d )
7 f o r f <− f s y i e l d f ( 4 )

In summary:

– def defines a method, parameter types explicit
– => defines a function, parameter types inferable
– Functions are objects with method apply (e( args ) ===e . apply ( args ))

Folds

MapReduce is a programming model for processing and generating data sets with a parallel,
distributed algorithm. It requires a main process that performs filtering and sorting (the map
step) and a summary operation that collects and combines results (the reduce step). Below is
an example of counting the number of occurrences of each word in a set of documents using
MapReduce in Scala.

1 def map ( name : S t r i n g , c o n t e n t s : S t r i n g ) =
2 / / name : d o c u m e n t name ( i r r e l e v a n t h e r e )
3 / / c o n t e n t s : d o c u m e n t c o n t e n t
4 f o r w <− c o n t e n t s do
5 e m i t ( w , 1 )
6
7 def r e d u c e ( word : S t r i n g , p a r t i a l C o u n t s : I t e r a t o r ) =
8 var sum = 0
9 f o r pc <− p a r t i a l C o u n t s do

10 sum = sum + pc
11 e m i t ( word , sum )

The MapReduce framework is a distributed implementation of a recursive algorithm. For
example, we can sum up the elements of a list of integers as below.

1 def sum ( x s : L i s t [ I n t ] , z : I n t = 0 ) : I n t = x s match
2 c a s e N i l => z
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3 c a s e y : : y s => sum ( y s , z + y )
4
5 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
6 sum ( x s )

The algorithm takes a list of (remaining) elements and a partial result, and aggregates the
partial result with the result of processing a single element, until no more elements are left
to process. It computes the sum in a forward fashion, passing the aggregated result to the
next step. In a backwards fashion as below, the aggregation is postponed until all elements are
processed.

1 def sum ( x s : L i s t [ I n t ] , z : I n t = 0 ) : I n t = x s match
2 c a s e N i l => z
3 c a s e y : : y s => y + sum ( y s , z )
4
5 v a l x s = L i s t ( 1 1 , 2 1 , 3 1 )
6 sum ( x s )

Both have in common that they are using an accumulator. Scala has builtin fold oper-
ations that allow us to traverse collections while accumulating results. Operation foldLeft
performs accumulation in a forward fashion, foldRight in backwards fashion. foldLeft is tail
recursive, which means that the base case is the first element, the recursive call is on the tail,
and the accumulator is applied to the head and the accumulated result. foldRight is recursive
into an argument, which means that the base case is the last element, the recursive call is on
the tail, and the accumulator is applied to the head and the result of the recursion. Folds are
a universal concept that can be used to compute many different functions on lists, such as
summing up elements, appending a list to another list, flattening, or reversing.

Option Types

Option types are a principled approach to missing data. Option[T] resembles List [T] with a
length of at most 1. Java, for a long time, emphasized programming with exceptions in order
to report anything that deviates from a successful result.

1 / / t h e J a v a way
2 def g e t D i r s 1 ( dirName : S t r i n g ) : L i s t [ j a v a . i o . F i l e ] =
3 v a l d i r = new j a v a . i o . F i l e ( dirName )
4 v a l x s = d i r . l i s t F i l e s
5 i f x s == n u l l t h e n t h r o w new j a v a . i o . F i l e N o t F o u n d E x c e p t i o n
6 x s . nn . t o L i s t . map ( _ . nn ) . f i l t e r ( _ . i s D i r e c t o r y )

Exceptions, however, are best used to report exceptional circumstances (such as a broken
network connection); missing data is quite an expected result. Programming with option-
als allows us to document missing data and allows our users to appropriately react to it (as
opposed to the Java habit of just passing on exceptions).

1 def g e t D i r s 2 ( dirName : S t r i n g ) : O p t i o n [ L i s t [ j a v a . i o . F i l e ] ] =
2 v a l d i r = new j a v a . i o . F i l e ( dirName )
3 v a l x s = d i r . l i s t F i l e s
4 i f x s == n u l l t h e n r e t u r n None
5 Some ( x s . nn . t o L i s t . map ( _ . nn ) . f i l t e r ( _ . i s D i r e c t o r y ) )
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With optionals, clients no longer suffer from the convolutional way of providing a result
from multiple execution traces. An option is a type that may have some result or nothing.
Scala knows several option types:

– None is the empty option
– Nil is the empty list
– null is a reference to nothing

Unit is not an option type, it only has a single value (always has nothing). Even though
Scala has null, we often pretend it does not exist. More recent languages, such as Swift and
Kotlin, identify None and null; these languages distinguish nullable and non-nullable types.
Java also includes an optional, but its intended use is narrowed to library methods whose
return types needed a clear way of communicating the absence of a result and null is over-
whelmingly likely to cause errors.
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