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Functional Programming: Programming with Pure

Functions and Immutable Data

In this lecture, we explore the following questions:

® How is a functional programming language built entirely from expressions?

Learning Goals

� Understand basic Scheme: expressions, cons cells, lists, functions, and recursion

Scheme

We start making our way into functional programming by exploring how functional pro-
grams are built entirely from (pure) expressions and operate primarily with immutable data.
These concepts were introduced in the late 1950s, early 1960s first with Lisp and got later ad-
vanced into Scheme and the many dialects (e.g., Common Lisp, Scheme, Clojure, Racket).
The original motivation behind the design of these languages was the ability to implement
logic reasoning and AI applications (think knowledge representation and reasoning, not ma-
chine learning). These languages pioneered a plethora of programming language concepts:

– garbage collection
– first-class, higher-order, nested functions
– read-eval-print loop (REPL) including runtime compilation
– macro system
– multiple dispatch and multi-methods

In this course, we will use Scheme to illustrate the language concepts. To give you a bit
of a feel of the language, below is a snippet of code that calculates the length of a linked list
recursively.

1 ; calculates the length of a linked list recursively
2 (define (length l)
3 (if (equal? l ())
4 0
5 (+ 1 (length (cdr l)))))

The designers of Scheme opted for fully-parenthesized expressions in prefix notation, in-
stead of defining operator precedence rules. The benefit is that parsing becomes extremely
easy; the downside is that we have to read and write lots of silly parentheses.
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Expressions. Expressions in Scheme are built from atoms: number literals 5, string liter-
als "hello world", and symbols 'helloworld. Arithmetic expressions use prefix notation,
must be parenthesized, and are n-ary evaluated in the listed order.

1 (+ 10 5 2) ; result: 17
2 (- 10 5 2) ; result: 3
3 (* 10 5 2) ; result: 100
4 (/ 10 5 2) ; result: 1

Writing expressions in prefix notation and fully parenthesized simplifies parsing. In prefix
notation, the operator is listed before the operands (+ 1 2). As a result, at the time the parser
reads operands their expected type is already known since the operator came first. In infix
notation, the operator is listed between the operands (1 + 2), so that the parser first reads
an operand without knowing what type is expected. In postfix notation, the operator comes
after the operands (1 2 +), so all operands have to be parsed without knowing expected types.

Functions in Scheme are defined in expressions: (define (square n)(* n n)). The
operatordefine takes as first argument a list of function name and argument names, followed
by the function definition (a sequence of expressions). To invoke a function, we simply write
an expression consisting of the function name followed by argument expressions: (square
5). We can invoke functions multiple times: (square (square 5)). The general form of
function definition is below.

1 (define (f param_1 param_2 ... param_m) (e_1 e_2 ... e_n))

The function f takes m arguments. Its definition is a sequence of n expressions, where the
first n − 1 expressions are evaluated for their side effect and expression e_n determines the
result of the function. No return keyword is necessary and no statements, Scheme only
uses expressions. Optionally, we can use the keyword begin to mark the sequence of ex-
pressions: (define (f param_1 param_2 ... param_m)(begin e_1 e_2 ... e_n)). A
function call expression (f M N) is evaluated by first evaluating expression M to value U ,
then evaluating expression N to value V , and then invoking function f with values U and
V . Note that the parentheses are mandatory! The operator define is a special form, not a
function, so this convention does not apply.

Boolean and conditional expressions include the literals #t and #f, the operator = to test
numeric equality of numbers (define (isZero n)(= n 0)). Conditional expression if is
a non-strict special form.

1 (define (safe-divide m n)
2 (if (= n 0)
3 "divide by zero"
4 (/ m n)))

Remember that non-strict evaluation means that arguments are evaluated on demand,
in this case the Boolean condition and, depending on its outcome, one of the branches. Re-
cursive functions are common in Scheme, and in fact throughout functional programming.
Below, we implement computing the factorial of a number n in Scheme using a conditional
expression.

1 (define (fact n)
2 (if (<= n 1)
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3 1
4 (* n (fact (- n 1)))))

Compare this to the C factorial using conditional expressions.

1 i n t f a c t ( i n t n ) {
2 r e t u r n ( n <= 1 ) ? 1 : n * f a c t ( n − 1 ) ;
3 }

We notice some differences, most obviously prefix vs. infix notation and a more readable
conditional expression in Scheme. Another obvious difference is that in C we need to anno-
tate types, while in Scheme types are inferred (more about this in a later lecture).

Lambda expressions (named after Church’s lambda calculus) provide binders to define
“anonymous” functions. For example, (lambda (x)(+ x 1)) defines a function that incre-
ments the value of its argument. Lambda expressions are useful as arguments to higher-order
functions, i.e., functions that take other functions as arguments (compare to function point-
ers in C).

Cons Cells. The primary means of defining data types in Scheme is by combining two
pieces of data into a pair called a cons cell. We can define homogeneous cons cells, such as pairs
of numbers (cons 1 2)or pairs of strings (cons "hello""world), and heterogeneous cons
cells, such as a pair of a number and a string (cons 1 "world"). We use function car to
extract the first component of a cons cell, and cdr to extract its second component.

1 (car (cons 1 "world")) ; result: 1
2 (cdr (cons 1 "world")) ; result: "world"

The most important use of cons cells is as pairs holding some data plus pointers to other
data (car position for elements, cdr position for next cons cell). With this use, we can build
container data structures, such as linked lists and trees. Linked lists can be built using '() for
the empty list and cons to create pairs.

1 () ; the empty list
2 (cons 1 ()) ; the list 1
3 (cons 1 (cons 2 (cons 3 (cons 4 '())))) ; the list 1,2,3,4

This notation is quite lengthy, so Scheme knows syntactic sugar to build lists in a less
verbose way:

1 (quote (1 2 3)) ; special form quote prevents evaluation
2 '(1 2 3) ; shorthand for quote
3 (list 1 2 3) ; evaluates args and puts result in a list
4 (list 1 2 (+ 1 2))

In order to define algorithms on lists, equality tests are quite handy. Scheme distinguishes
between pointer equality eq? and structural equality equal?. Pointer equality compares two
pointers and only returns true when the pointers point to the exact same address, while struc-
tural equality traverses two structures and compares the content elementwise.

1 (eq? (cons 1 2) '(1 2)) ; returns #f
2 (equal? (list 1 2 3 ) '(1 2 3)) ; returns #t
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Now that we have the building blocks for defining algorithms on data structures, let’s
examine a small example of computing the length of a linked list recursively. As usual in a
recursive function, we start by identifying the base case (i.e., the smallest amount of work no
longer decomposable into pieces) and the recursive case (i.e., how to work on one element
and combine it with the rest of the work).

1 (define (length l)
2 (if (equal? l '())
3 ; base case: empty list has length 0
4 0
5 ; recursive case: 1 + length of rest
6 (+ 1 (length (cdr l)))))

A sample evaluation of this function with its recursive calls and intermediate results is
illustrated below.

1 (length '(5 6 7))
2 --> (if (equal? '(5 6 7) ()) 0 (+ 1 (length (cdr '(5 6 7)))))
3 --> (+ 1 (length (cdr '(5 6 7))))
4 --> (+ 1 (length '(6 7)))
5 --> (+ 1 (+ 1 (length '(7))))
6 --> (+ 1 (+ 1 (+ 1 (length '()))))
7 --> (+ 1 (+ 1 (+ 1 0)))
8 --> (+ 1 (+ 1 1))
9 --> (+ 1 2)

10 --> 3

Dynamic Types and S-Expressions. Scheme uses dynamic types and type inference. It
provides test operators that allow us to inspect the type of an element.

1 (symbol? 'x)
2 (number? 1)
3 (boolean? #t)
4 (string? "x")
5 (procedure? (lambda (x) (+ x 1)))

The major building blocks of Scheme programs are symbolic expression (S-expressions).
S-expressions include pairs, numbers, Booleans, strings, symbols, and the empty list. Parsing
a Scheme program results in an S-expression, which is then sent to a runtime evaluation pro-
cedure called eval for evaluation. The special form quote causes an expression to be parsed
without evaluation.

1 (+ 1 2) ; 3
2 '(+ 1 2) ; the list (S-expression) +,1,2
3 (cons '+ '(1 2)) ; a pair of a + symbol and the list 1,2
4 (car '(+ 1 2)) ; + (the first element of the list +,1,2)

Within Scheme, we have access to eval and can explicitly call it on S-expressions for run-
time evaluation.

1 (eval (cons '+ '(1 2)))
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2 (define (add-all l) (eval (append '(+) l)))
3 (add-all '(1 2 3))

This is especially useful together with read that reads S-expressions from the console.
Together, these functions allow us to implement interactive applications using a read-eval-
print loop (REPL).
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