
Data Mining to Predict and Prevent Errors in Health
Insurance Claims Processing

Mohit Kumar, Rayid Ghani, Zhu-Song Mei
Accenture Technology Labs

Chicago, IL, USA
mohit.x.kumar, rayid.ghani, zhu-song.mei@accenture.com

ABSTRACT
Health insurance costs across the world have increased alarm-
ingly in recent years. A major cause of this increase are pay-
ment errors made by the insurance companies while process-
ing claims. These errors often result in extra administrative
effort to re-process (or rework) the claim which accounts for
up to 30% of the administrative staff in a typical health in-
surer. We describe a system that helps reduce these errors
using machine learning techniques by predicting claims that
will need to be reworked, generating explanations to help
the auditors correct these claims, and experiment with fea-
ture selection, concept drift, and active learning to collect
feedback from the auditors to improve over time. We de-
scribe our framework, problem formulation, evaluation met-
rics, and experimental results on claims data from a large
US health insurer. We show that our system results in an
order of magnitude better precision (hit rate) over existing
approaches which is accurate enough to potentially result in
over $15-25 million in savings for a typical insurer. We also
describe interesting research problems in this domain as well
as design choices made to make the system easily deployable
across health insurance companies.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.4.2 [Information Systems Applications]:
Types Of Systems—Decision Support

General Terms
Design, Experimentation, Performance

Keywords
Health insurance claims, Claim rework identification, Pre-
dictive system, Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
Health insurance costs across the world have increased

alarmingly in recent years. These costs have been passed
down to consumers and employer-sponsored health insur-
ance premiums have increased 131 percent [11] over the last
decade. A large proportion of these increases has been due to
increase in the administrative costs of insurance providers.
According to a study by McKinsey and Company [9], $186
billion of over-spending on healthcare in the US is related
to high administrative costs.

The typical process for insured healthcare in the US is that
a patient goes to a service provider (medical facility) for the
necessary care and the provider files a claim with the pa-
tient’s health insurance company for the services provided.
The insurance company then pays the service provider based
on multiple complex factors including eligibility of the pa-
tient at time of service, coverage of the procedures in the
benefits, and contract status with the provider etc.

Payment errors made by insurance companies while pro-
cessing claims often result in re-processing of the claim. This
extra administrative work to re-process claims is known as
rework and accounts for a significant portion of the admin-
istrative costs and service issues of health plans. These er-
rors have a direct monetary impact in terms of the insur-
ance company paying more or less than what it should have.
[1] estimates from a large insurance plan covering 6 million
members had $400 million in identified overpayments. In our
discussions with major insurance companies, we have found
that these errors result in loss of revenue of up to $1 billion
each year. In addition to the direct monetary impact, there
is also an indirect monetary impact since employees need
to be hired to rework the claim and answer service calls
regarding them. According to estimates by an Accenture
study, 33% of the administrative workforce is directly or in-
directly related to rework processing. These statistics make
the problem of rework prevention extremely important and
valuable to the healthcare industry and motivated the work
described in this paper.

There are two industry practices currently prevalent for
identifying payment errors: random quality control audits
and hypothesis (rule) based queries. Random audits are not
very effective at identifying this rework since the majority of
claims are correct and most of the effort spent on audits is
wasted. In our discussions and research, we found that some-
where between 2% and 5% of the claims audited are rework,
making 95% to 98% of the effort spent in random audits a
waste. Hypothesis based querying involves domain experts
identifying several hypothesis about how rework occurs and

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

instantiates itself in claim data. They create rules which
are then turned into SQL queries to find matching claims.
Typical systems contain a few thousand rules that are run
every day identifying thousands of suspect claims. This re-
sults in slightly better precision (or hit rate) than random
audits but still require a lot of manual effort in discovering,
building, updating, executing and maintaining the hypothe-
ses and rules. These rules are also insurance plan specific
and do not generalize well across companies thus making the
deployment very time consuming and dependent on domain
experts.
In this paper, we describe our system to help reduce these

claims errors using machine learning techniques by predict-
ing claims that will need to be reworked, and experiment
with generating explanations to help the auditors correct
these claims, feature selection, concept drift, and active learn-
ing to collect feedback from the auditors to improve over
time. This Rework Prevention Tool has been developed in
conjunction with industry experts from Accenture’s Claims
Administration group who currently work with most of the
large insurance companies in the US. We have applied this
system to two large US health insurance companies. In the
rest of this paper, we describe our system framework, prob-
lem formulation, evaluation metrics, and experimental re-
sults on claims data from a large US health insurer. We
show that our system produces an order of magnitude better
precision (hit rate) over existing approaches which is accu-
rate enough to potentially result in over $15-25 million in
savings each year for a typical insurer. This in turn would
have a large effect on the healthcare costs as well as help
make the healthcare process smoother. We also describe in-
teresting research problems in this domain as well as design
choices made to make the system easily deployable across
health insurance companies.

2. RELATED WORK
In general, claims processing is not an area where data

mining techniques have been widely used. A lot of the work
in claims has focused on fraud detection which is related but
different area. [4] mentioned a system for detecting health-
care provider fraud in electronically submitted claims de-
veloped at Travelers Insurance. Health claim fraud is very
different from Rework identification because the character-
istics of fraudulent claims and Rework claims are different.
Often, there is not much labeled data available for fraud and
the magnitude of fraud is also typically smaller. Similarly,
related work in the area of credit card fraud [2] is also dif-
ferent from Rework identification as the data characteristics
and expectations are different. There has been some work
in the area of claim overpayment identification [1] which is a
subproblem of Rework identification as Rework constitutes
both overpayment and underpayment of claims. Also the
approach taken in the system is dependent on client-specific
‘edits’ or rule-based scenarios by training the models for each
scenario. This makes the approach less generalizable as it
requires the designing of these client scenarios or rules.
Outside the research community, there are some commer-

cial product vendors such as Enkata that provide tools to an-
alyze past claims in order to discover root causes for claims
rework. These tools do not predict future rework using ma-
chine learning techniques and do not help prevent errors
automatically. Typically, these tools help with understand-

Claim

Submission

Automated

Claim Pricing

Rework

Prediction
Finalized

P tSubmission Claim

validation

Pricing Prediction

Tool
Payment

Auditor

Figure 1: Claim Processing Pipeline

ing the factors of historical rework and require managers to
fix the back-end system.

3. PROBLEM FORMULATION
We formulate the problem of Rework prediction as a clas-

sification problem and generate a ranked list of claims that
need to be manually reviewed. We give the details of the
problem formulation in the sections below.

3.1 Claim Processing Overview
We start by giving an overview of the claims processing

workflow (Figure 1) and describe how rework prediction fits
in this workflow. Claims are created by service providers
and submitted to the insurance company. They go through
automatic validation checks followed by pricing using benefit
rules and contracts. This takes place automatically in some
cases and in other cases, manual intervention is required.
Once the pricing is applied, claims gets finalized and pay-
ment is sent to the service provider. The system we describe
in this paper is the box placed after the pricing is applied to
detect potential issues with the claim before it’s finalized so
it can be corrected before payment is sent.

3.2 Requirements
We worked with domain experts to come up with require-

ments that would make a rework prediction solution practi-
cal and useful for insurance companies. These requirements
are described below and motivates our solution.

• Prepayment prediction: We need to identify rework
claims before payment is sent with the information
that is available at the time of claims submission. This
seems obvious to data mining experts but the industry
norm today is that most of this analysis happens after
payment is made. The problem for insurance compa-
nies then becomes how to recover the payment (or pay
penalties if there was an underpayment). Insurance
companies have recovery departments tasked with re-
covering payments that have been made incorrectly.
Since the motivation of the system is to reduce health-
care costs, the goal is to pay the claim correctly the
first time and without the extra effort later to correct
it.

• Generalization: We need to identify a wide variety of
rework, not be limited to manually identified rules,
and should be easily deployable across companies. De-
signing rules for identifying errors in payment requires
deep domain knowledge. These rules are also very
specific to individual companies making the process
of transferring the system to new companies difficult
and expensive. Thus our framework needs to be easily
deployable across clients with minimal extra effort.

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

• Accuracy : We should flag suspect claims with high
accuracy to make it financially feasible for a human
auditor to examine the claim and correct it. Since
examining a claim can take considerable time (ranging
from 20 minutes to over an hour), the accuracy of our
system has to be high enough to justify this extra cost.

• Explanations: We should provide a means of fixing the
claim errors quickly and economically. It should be
able to communicate to the auditors the reasons for
which the system is predicting the claim as Rework.

• Adaptability : The framework should adapt to changes
in environment and the healthcare ecosystem due to
changes in legislations, insurance plans, contracts, and
pricing. We need to make sure our system is able to
adapt accordingly. The system is also expected to im-
prove its accuracy over time as it observes more and
more data. Thus the system should actively solicit and
use the feedback from the auditors to keep adapting to
the changes and improving its performance.

3.3 Our Formulation
We have formulated the problem of Rework identification

as a binary classification problem and predict whether a
claim will end up requiring Rework in the future or not. We
use the confidence score of the binary classifier to prioritize
and order the claims for review by the auditors.
‘Prepayment prediction’: We look at the claim before pay-

ment and predict whether it is likely to be Rework. All our
features are based on the information that is available at the
point in time when the claim was adjudicated and ready for
payment (but not paid).
‘Generalization’: translates to having a company inde-

pendent ‘universal’ data model to which a company’s data
is mapped making the feature extraction step for the frame-
work company-independent. The system also has the flex-
ibility to include any company specific feature which may
not be present in the ‘universal’ data model. There is no
preprocessing of the data based on the manual rules that
may exist for the client, so the rework prediction is not tied
to client-specific rules.
‘Accuracy’: We prioritize the claims based on the classi-

fication confidence and aim to optimize the predictions for
the top ranked claims. This is justified in real life as the
daily volume of claims coming into the pipeline for adju-
dication is huge, typically 50,000 claims per day for a 3.5
million member plan, and it is practically only possible to
manually examine only a fraction of the claims.
‘Explanations’: We have come up with a novel User In-

terface that communicates the system’s recommendation to
the user, highlighting the underlying reasons for the recom-
mendations. The UI gives the auditors an overall likelihood
score for the claim being rework as well as the data fields
responsible for the prediction making their task simpler and
more efficient.
‘Adaptability’: We have built a detailed feedback mech-

anism in the UI that solicits feedback from the auditor to
confirm or deny the system’s recommendation. We also get
feedback about the system’s reasoning for the Rework. The
system uses this feedback to improve its accuracy over time.
For adaptability over time, we have built in the experimen-
tation pipeline a model selection framework that selects the
best model.

4. SYSTEM OVERVIEW
Our system consists of the following components: Data

Collection, Feature Construction, Model Learning and Se-
lection, item Scoring, Explanation Generation, User Feed-
back, and User Interface.

4.1 Data Collection
As shown in the figure 1 we capture data from the claims

processing pipeline when it is priced and ready for finaliza-
tion and payment. The data we operate on is the entire
claims data warehouse which contains all the claims that
have been submitted and processed in the past several years.

We also need labels for this data to train our models.
There are two labels we need to assign: rework or correct.
The claims assigned the label rework are those that were
manually examined in the past and contained errors. Those
assigned the label correct are ones that were manually exam-
ined in the past and found to be correct. The process of get-
ting these labeled claims is fairly difficult in insurance com-
panies. The labeled data exists but it’s distributed across
several systems and is collected through different business
processes.

The labels we typically come from three primary sources.
The first source is the Quality Control Audit system which
contains all the claims that have been manually audited by
auditors for quality control. The class distribution in this
data is typically 2-5% rework and 95-98% correct claims
which is the overall distribution of the entire population
of claims. The second source is the Provider Dispute sys-
tem. This source contains claims that are discovered by the
service providers as erroneously paid and sent back to the
insurance company for re-processing. Although this hap-
pens after claim is paid, we can use these as labeled claims.
Most of the claims that come through this system are re-

work (typically underpayments). The third source is the
financial recovery process. This process is also initiated af-
ter the claim is paid to recover overpayments the insurance
company makes to providers. Since the number of claims
in the provider dispute and financial recovery systems is
much larger than that in the quality control system, the en-
tire training set contains more rework examples (≈60-80%)
than correct examples (≈20-40%). This raises interesting
research issues since the training distribution is very differ-
ent from the distribution that would occur in real data after
deployment. The real data distribution is typically the op-
posite - 95% rework, 5% correct since that is the distribution
of the entire population of claims.

4.2 Feature Construction
Once the data is collected and labeled, feature construc-

tion is the next step that takes place. There are four classes
of information in each claim: Member information, Provider
information, Claim Header, and Claim Line Details. Our
features are extracted from these classes of information. Mem-
ber and Provider information span the entire claim and
provide information about the Member (patient), and the
provider (hospital, doctor, or medical facility). The claim
header gives information about the entire claim as well.
Contract information, Amount billed, Diagnosis codes, Dates
of service are some examples of data fields in the claim
header. The last source is the Claim Line Details. This
gives the details of each line in the claim which is used to
itemize the claim for each procedure that was conducted on

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

the patient. For each procedure, the claim line includes the
amount billed, the procedure code (CPT), the counter for
the procedure (quantity). Since we are currently focusing on
predicting the likelihood of the entire claim as being rework,
we aggregate claim line details to the overall claim level. For
example, we create features using Min, Max, Average and
standard deviation functions for each numeric data field in
each line. We also create more aggregate features that are
specific to procedure codes.
We derive some more features that are specific to the

claims processing domain. For example, we calculate the
time (in days) between the date of service and the date of
submission of the claim. The intuition for this feature is to
figure out if the claim is valid as there is a time limit within
which the claims should be filed with the plan and also to
see if there is a correlation between Rework and late/early
submission of claims. Overall, we end up with 1̃5,000 cate-
gorical and numerical features to build our models.

4.3 Model Learning & Selection
We experimented with SVMs as the main learning algo-

rithms. SVMs have been shown to be robust for large data
mining tasks with large feature sets. Since SVMs are not
able to handle categorical data we had to create binary fea-
tures from our categorical features which led to feature ex-
plosion with nearly 110,000 features. We used SVMperf [7]
for SVMs. We also used SVMs from other packages Weka [5],
KNIME but neither of them were able to handle our dataset
and run experiments efficiently. In our experience, SVMperf
is the most efficient package which can handle large datasets
quickly.
We also chose SVMperf because of the extremely fast

training time. One of our goals was to create a system
that requires minimal machine learning expertise to deploy.
We wanted to automate the selection of classifier parame-
ters and the ideal feature set size empirically using hold-out
sets. This required us to run thousands of experiments vary-
ing the training data, classifier parameters, feature set sizes,
and evaluation metrics to optimize. SVMperf, because of it’s
fast training time, was ideal for our needs since it allowed
us to automate the model selection process.
Another aspect of model selection is dealing with concept

drift and change in the target function over time. The obvi-
ous approach is to use all the training data available at any
given time to train the models. If there is a lot of concept
drift over time, more recent training data is more useful and
retaining all history may end up hurting the overall perfor-
mance. Our model selection experiments take this into ac-
count and empirically estimate the best subset of the data
that is useful to predict rework in the near future. We give
more details in the experiments section later.

4.3.1 Feature Selection
Since we have more than 110K features after creating bi-

nary features from the categorical data, we wanted to see if
feature selection would be useful. We wanted to see if we
can reduce the storage requirements for the features as well
as explore the effect of reducing the feature size on SVM
accuracy. Although it has been shown that SVMs are able
to compensate for feature noise and can handle large fea-
ture sets, we wanted to confirm that for our problem and
data. We experimented with Information Gain measure but
the runtime for our data set was impractically high so we

used a frequency-based feature selection technique. Since
converting categorical features into binary features creates
a sparse feature space, frequency-based feature selection was
useful in making our system more efficient both in terms of
execution time and storage requirements.

4.4 Scoring
Once we have picked the best model(s), we run that model

to classify all the unlabeled data in our database. The scores
assigned to each claim by the model(s) are aggregated and
stored in our database to be used by the user interface as
well as other components of our system.

4.5 Generating Explanations
Accurately identifying rework and presenting it to audi-

tors is one aspect of our system. Another equally important
aspect is to give the auditors the ability to quickly determine
if the claim being presented to them is rework or not. Cur-
rently, auditors in most companies are given a claim without
any hints about why a claim could be rework. The goal of
this component is to explain the predictions of the classifier
to the auditor to reduce the time it takes them to determine
the label of the claim.

In general, this task is extremely important for machine
learning algorithms. People typically use decision trees be-
cause they are easy to explain the classification to domain
experts. Often, this comprehensibility comes at the expense
of accuracy. In our case, we use the feature weights learned
by the SVM to generate the explanations. Linear SVMs
use a prediction function of the form : prediction(x) =
sign(wTx + b) = sign(

∑
i
wi ∗ xi + b) with features i. Fea-

tures with large (absolute) values have a large effect on the
classification while features with weights wi close to zero
have little effect. [12] has shown that the features with high
weights are the features that are influential in determining
the width of the margin when learning with SVMs. [10] have
also used a similar approach to perform feature selection by
retaining features with high weights.

To generate an explanation for claim C, we calculate an
influence score for each feature Ci in the feature vector.
InfluenceScore(Ci) = wi ∗ valueCi

where valueCi
is the

value of the feature i in claim C. We treat this score as the
influence of feature i in classifying the current claim C. This
score is embedded in to the user interface that is provided
to the auditors to focus the attention of the auditors on the
most influential data fields. We describe this in more detail
in the User Interface section later.

In addition to influence scores, we also experimented with
using structured codes that were assigned as error codes to
the claims in the labeling process to generate explanations.
We also plan to explore the use of text comments that are
entered by auditors as part of the auditing process to gen-
erate templates for explanation.

4.6 User Feedback
Getting feedback from auditors to improve future predic-

tions is an important requirement for our system. We get
feedback from the auditors in three ways:

1. Claim Feedback: For each claim that is presented to
the auditor, the auditor examines the claim and de-
cides if it’s rework or not. In each case, the feedback
the auditor provides is a binary judgement as well as a
Reason category (from a predefined set of categories).

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

In addition, we also provide a text comment box where
the auditor can enter a free-text comment that we can
analyze to create further reason categories.

2. Active Learning: Typically the auditors will review
claims that have high probability of rework in order to
maximize efficiency and find as many rework claims as
possible. One drawback of this approach is that the
learning algorithm usually gets positive reinforcement
from this feedback and may not improve much over
time. We also implement active learning strategies in
our system. The key idea behind active learning is that
a machine learning algorithm can achieve greater accu-
racy with fewer training labels if it is allowed to query
the user about specific unlabeled examples. Since our
problem domain contains millions of unlabeled exam-
ples, there is a cost to obtaining examples, and we
want our system to improve while minimizing the la-
beling cost, active learning is an appropriate technique
to use. In the experiments section, we describe the ac-
tive learning strategies we use.

3. Feature Feedback: In addition to getting more labeled
data through user feedback, we also want to get finer-
grained structured feedback from the auditors. Al-
though we have the text comment field to get un-
structured feedback, we wanted to make it easy for
auditors to give us structured feedback that can be
directly used by the learning algorithms. Using our
User Interface (described in the next section), when a
claim gets presented to the user with the high influence

fields highlighted, we allow the auditor to toggle the
highlighted fields signifying that field was not a cause
for rework in that claim. We also allow auditors to
click on any other fields which highlights it, telling the
system that this field is influential in that claim being
rework or not. This structured feature-level feedback
can be incorporated back into the learning algorithm
and improve the models over time.

4.7 User Interface
Our system is designed to be used by auditors in health

insurance companies as part of their every day work. This
makes the user interface critical for adoption by users. We
needed the user interface to be simple and intuitive for the
auditors and at the same time, useful for us to collect the
necessary feedback from the auditors. To achieve these goals,
we worked with domain experts and designed an interface
that was as close to what auditors typically use (a claim
form) when auditing the claim but enhancing it with some
new features. Figure 2 shows a screenshot of the user inter-
face for the auditors. This interface provides the auditors
with a list of claims in their work queue with a rework like-
lihood score assigned to each claim that is generated by the
classifier. In addition, we use the influence scores described
earlier to highlight the data fields. The intensity of the high-
light color is proportional to the influence score assigned by
the classifier. This feature has been designed to focus the at-
tention of the auditor to the influential data fields and help
them audit the claim faster. As mentioned earlier, we also
allow the auditors to click on any field to unhighlight it (if
it’s highlighted) or to highlight it and give us feedback that
field is influential (or not).

Figure 2: User Interface with the Auditor view (sen-
sitive PHI fields are blanked out).

5. EXPERIMENTAL RESULTS

5.1 Data
In this paper, we present experimental results using real

claims data from a major insurance company in US as part
of our project with them. We got approximately 3.5 million
claims (14 million claim lines) spanning 2 years. Of these
3.5 million claims, 121,000 had been manually audited and
found to be either Rework or not, forming our labeled data
set. In this labeled data set, around 40% claims were Re-
work and the rest Correct. It is important to remember that
this distribution does not hold in the operational world since
the labeled data has a skewed class distribution (described
in section 4.1). For feature extraction, we take the state of
the claim from the historical data at the moment when they
are priced and are ready for final payment. Since SVMs are
not able to handle categorical data we create binary fea-
tures from the categorical features resulting around 110,000
features based on all the 3.5 million claims data. Of these
110,000 features, only 33,000 are present in our labeled data
set.

5.2 Metrics
For the large insurance provider, the estimated capacity

for auditing the claims is about 200 claims per day (121K
claims in 2 years) whereas the volume of claims that need
to be processed daily is approximately 5000 claims per day
(3.5 million claims in 2 years). The audit capacity is approx-
imately 4-5% of the total daily volume of the claims which
is the case, in general, for most of the insurance companies.

Standard metrics such as accuracy, precision, or recall are
useful in comparing different models and approaches, but
not enough to minimize the number of claims errors, which
is the eventual metric. Based on the audit capacity and
discussions with domain experts, we decided that we need a
metric that evaluates performance for the top 5-10% scored

zahra
Highlight

zahra
Highlight

zahra
Highlight

zahra
Highlight

40

50

60

70

80

90

100

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

Percentile

Precision

Recall

Figure 3: Precision Recall for test set

claims to maximize benefits in real scenarios. Hence, we
use Precision (or hit rate) at 10th Percentile as our metric.
This is similar to the evaluation metric, Precision at top
10 documents, popularly used in the Information Retrieval
community. In our experimental framework, we do have the
flexibility to modify the metric easily and do model selection
based on different metrics. In the results reported below, we
show precision recall graphs where appropriate, as well as
our precision at top 10% metric when comparing different
models.

5.3 Is our system accurate?
Before we can deploy our system, we needed to run some

experiments to show the effectiveness of our system without
live audits. We randomly split the labeled data in 70%-30%
training and test sets. Figure 3 shows the Precision-Recall
graph for this experiment averaged over 10 random 70-30
splits. The average precision at 10th percentile is 92.9%.
Compared to the 2-5% hit rate that the insurance companies
get in their auditing practice currently, this is a significant
boost in performance. However, the results are not expected
to translate directly to real life because the class distribu-
tion in this labeled data is skewed and not reflective of the
real life distribution. In our dataset, 40% of the claims are
Rework whereas in real-life only 2-5% of claims are expected
to be rework. Even so, the baseline performance on our data
set corresponding to a random ranking is 40% whereas our
system gives almost 93% precision at top 10.
In order to estimate the performance of our model in a

more realistic scenario, we design the following experiment.
We mix the labeled test set (36,000 claims) from the pre-
vious experiment in the unlabeled data (3.4 million claims)
to form a new data set. We score the claims from this new
data set using the model trained on the training set and
rank order them based on the rework score. We expect the
Rework examples from the labeled test set to be towards
the top of this list and the Correct examples from the la-
beled test set to be towards the bottom, with the unlabeled
examples scattered throughout based on their rework score.
We calculate the Recall of both known Rework and Correct
from the labeled test set in this new dataset as shown in
figure 4. This graph helps us in verifying that the Rework
claims are being ranked higher in general than the Correct
claims. The interesting quantitative measure is that 42% of
the known Rework can be detected in the top 10% scored
claims. Based on our discussion with industry experts and

40

50

60

70

80

90

100

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

Percentile

Recall Rework

Recall Correct

Figure 4: Recall on unlabeled data

[1], the estimated recall for the current industry practice,
i.e. percentage of identified rework compared to the total
unidentified rework, is about 10% which makes our recall
score of 42% much higher.

Once we have shown in our experiments that we can effec-
tively detect labeled rework at high levels of precision and
recall, we give a sample of the highly scored unlabeled claims
to auditors. As mentioned earlier, it takes 20 minutes to an
hour for the auditor to audit a claim. Since we have 3.4 mil-
lion unlabeled claims, there is no practically feasible sample
size that can give us statistically significant confidence es-
timates about the system’s performance on the unlabeled
dataset. We selected a small sample of highly scored unla-
beled claims, which took them 3 person days to audit, and
achieved an overall precision (hit rate) of 65%. This 65%
precision was significantly better than the random audits
as well as the hypothesis (rule) based audit tools that are
currently in use that result in 5%-10% precision.

5.4 Does removing features hurt the classifiers?
The experiments described above were done using all fea-

tures. Since we run multiple models during experimenta-
tion, training and scoring times are crucial factors for our
system. One way to speed up the I/O is to reduce the num-
ber of features in our data. Another reason to experiment
with feature selection is to verify that the classifiers we are
using are robust to feature noise and do not suffer by using
all the features we create. As mentioned in System Overview
section, we use frequency based feature selection techniques.
Figure 5 shows the experiments with multiple minimum fre-
quency thresholds. We find that a threshold of 10 gives
slightly better accuracy than using all the features and re-
duces the feature set to about 8200 features. This gives us
the flexibility to reduce the number of features if speed and
storage requirements become important and also reassures
us that we can easily add more features without the SVM
precision suffering much.

5.5 Is recent labeled data more useful than all
labeled data?

There are two goals we are trying to achieve with our sys-
tem. The first one is at initial deployment of our system;
it needs to identify claims that are in the historical claims
database that have been processed incorrectly. The experi-
ments described so far optimize that scenario where we ran-
domly split the data into training and test sets. Once all

zahra
Highlight

100

1000

10000

100000

80

85

90

95

F
e
a
tu
re
s
(l
o
g

 s
ca
le
)

P
re
ci
si
o
n

1

10

100

70

75

80

0 10 25 50 100 500 1000

N
u
m
b
e
r
o
f P

Cutoff Threshold for Frequency

Precision at 10th

Percentile

Number of

Features

Figure 5: Feature Selection Results

30

40

50

60

70

80

90

100

0

10

20

30

Training Size

Precision at 10th

Percentile

Figure 6: Temporal experiment results

historically processed claims have run through our system,
the next goal is to continuously run new claims that come
in to the system and score them with the rework likelihood.
To show that our system is capable of doing well on future
data as well, we need to take into account that the nature
of rework can change over time. In data mining literature,
this problem has been termed as concept drift.
There are two approaches to take into account changes

in the nature of rework over time. We can either create
features that take into account temporal changes or create
models that are trained on specific time periods. We chose
to implement the latter approach in our system. The goal
is to understand and evaluate how well the model will do
on future data based on historical data. It is possible that
using all the training data available might inject noise into
our classifier since the nature of rework a year ago might
be very different. It is also possible that only taking recent
data into account won’t give us enough training data to have
high levels of precision and recall.
In our experiments, we take all the data for the 2 year

span. We then fix a size for the time window as the test set
and empirically evaluate the optimal preceding time window
for the training set. We build models using all time windows
before the test set and select the best performing one. The
size of this test window is varied from 1 to 8 months. Figure
6 shows the result of one set of temporal experiments where
we fix the test window to have 36000 temporally contigu-
ous data points while the training set is varied to include
more and more of the history starting from the data closest
to the test set. For example, the last point in the figure

40

50

60

70

80

90

100

Precision ! All Previous

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90 100

Percentile

Recall ! All Previous

Precision ! Last 2 months

Recall ! Last 2 months

Figure 7: Precision Recall for Temporal experiments

has training size 90,000 which means all the data up to the
last 36000 examples is included in the training set and the
last 36000 examples make up the test set. The first point
on this graph are prediction at 10% results averaged over
every 36000 example window as the test set and the 6000
examples just before each test set as the training set. This
experiment is designed to show if there is an optimal time
window on which to train the classifiers to optimize future
performance. Figure 6 shows that creating a training set
using recent claims is better than using all the claims.

Figure 7 shows detailed precision recall results for two of
the experiments from figure 6. We select the experiment us-
ing the first 90000 examples as training and the last 36000
as test (the last point on the graph) and the experiment
which results in the highest average precision at top 10%
(12000 examples training set and the same 36000 example
test set as before). It is interesting to note that the more
recent training set does result in better precision than using
all the training data but performs worse in terms of recall.
We believe that adding more history injects more noise (re-
ducing precision) but gets more coverage (increasing recall).
Although these results are specific to the data we are using,
we have build an automated experimentation framework in
our system that can run all these experiments with differ-
ent time windows and optimize the metric of choice for the
business users. This also reinforces our choice in SVMperf
as the learning algorithm due to its fast training time as it
allows us to run these experiments quickly to select the best
model.

5.6 Does active learning help improve the mod-
els?

As mentioned in Section 4.6, we include active learning
strategies in our system to obtain labels for the most in-

formative examples. Our setting is a natural setting for
pool-based active learning since we have a large unlabeled
pool of claims in our data. The aim is to select optimal
samples from the unlabeled pool in order to improve clas-
sifier performance. There are a number of sample selection
strategies developed in active learning literature. Initially,
we have used simple uncertainly sampling, where the active
learner queries those instances for which it is least certain.
Figure 8 shows the comparison of random versus uncertainly
sampling. The results are not very encouraging but since it’s
been shown that uncertainly sampling can end up focusing
on the outliers in the data (especially with little amounts of
labeled data in the beginning of the active learning process),

zahra
Highlight

zahra
Highlight

zahra
Highlight

40

50

60

70

80

90

100
a
t
1
0

 P
e
r
c
e
n
ti
le

0

10

20

30

40

1 6 11 16 21 26

P
r
e
c
is
io
n

Number of Iterations

Random

Uncertainity based

Figure 8: Active Learning Results

we plan to augment it with a density-based sample selection
strategy which selects instances with high uncertainty and
inhabiting densely populated regions of the unlabeled space.
We are currently exploring better active learning approaches
in our system.

6. DISCUSSION AND FUTURE WORK
Our experimental results show that the Rework Preven-

tion tool is accurate and allows health insurance companies
to save tens of millions of dollars every year. In this section,
we discuss some of the alternative problem formulations we
considered and experimented with as well as some design
choices we made in our system to make it easy to deploy
and practical to use in the real-world.

6.1 Alternative Problem Formulations
Although our initial formulation of rework prediction was

that of a binary classification problem, we think there are
several alternative ways to formulate the problem that lead
to interesting research directions. We present some of these
alternative formulations below.
Rework Prediction as a Ranking problem: We are using

the classification confidence to rank the claims and aim to
optimize the precision for top ranked claims. Thus an in-
tuitive alternate formulation is the classical ranking set up
where we learn some utility function to rank the claims.
The utility function can be based on not only the likelihood
of rework but also monetary impact of that rework such
as ‘recovery amount from overpayment and interest amount
for underpayments’. We have done initial experiments for
this formulation but the run-time for the system based on
RankSVM is impractical for the size of data we are currently
working with. We don’t present the details of the experi-
ments and results due to space constraints in this paper but
we plan to investigate this approach in future work.
Multi-class classification: In general, when a claim is re-

worked, the auditors document what was wrong with the
claim. They attach different error categories after audit-
ing the claim, chosen from a list of predefined ones (total-
ing about 50). Based on these categories, we can model
the rework prediction problem as a multi-class classification
problem where we try to predict the error category for the
claim. There are two motivations for this formulation: 1)
using different error categories makes the learning problem
easier as the classifier does not have to learn possibly dis-
joint functions and can model each category separately. 2)
if we can predict the error category, it will help us in ex-

plaining to the auditors what is wrong with the claim in a
manner similar to what they are used to reporting them-
selves. We have done initial experiments on this formula-
tion using direct multiclass, one vs. all, as well as ECOC
(error-correcting output codes) [3] but the results were not
as good as binary classification. We plan to experiment with
hierarchical classification algorithms to further evaluate the
feasibility of multiclass formulation.

Semi-supervised/Transductive learning: In our problem
setting, only a fraction of the claims are labeled as reworked
or correct. More than 90% of the claims in typical insurance
companies are unlabeled. This allows us to explore semi-
supervised modeling techniques such as EM, Co-training,
transductive SVMs, and graph-based methods. We did ini-
tial experiments using transductive SVMs [6] but the size of
our unlabeled data made the run-time of the system imprac-
tical. An interesting future work for us is to intelligently
sample the unlabeled data and then use the transductive
learning or come up with alternative, more efficient formu-
lations of transductive SVMs.

Multi-Instance Learning: In all the formulations we have
described so far, the goal has been to predict the entire claim
as being rework or not. In general, when a claim is adjusted
i.e. Rework we might also know which individual lines of the
claim were adjusted. An alternate problem formulation is to
predict which line(s) are likely to be adjusted later instead
of the entire claim. This helps us in giving a finer-grained
‘explanation’ to the auditors by pointing out which lines are
candidates for Rework. Also we can aggregate the line-level
predictions to generate claim level predictions. For the cur-
rent data set, the labeled data was at the level of claims, and
not lines. We can still do line level classification by assign-
ing all the lines in a claim the same label in the training set
but classify lines in the test/unlabeled set individually and
then aggregating the predictions to generate claim-level pre-
dictions. We experimented using this formulation and used
different functions for combining the line level recommen-
dation to obtain claim level recommendation such as Max,
Average, and Median line scores. We found the Max func-
tion to give best performance. More detailed discussion is
beyond the scope of this paper.

Creating the training set by assigning the same label to
every line in a claim has the risk of introducing label noise
which could make it difficult for typical supervised learn-
ing algorithms to learn accurately. We can formulate this
as a multi-instance classification problem [8] by treating the
claim as a bag and the lines being the instances. We assign
the claim labels to the bag and then standard multi-instance
learning algorithms can be used to learn and classify unla-
beled data. Unfortunately, we were not able to experiment
with this setting for our data because of impractically long
run-time of current MIL implementations (including those
in Weka[5])

In general, alternative formulations had issues with scal-
ability and complexity of existing implementations. Rank
SVM, Transductive SVM, and the multi-instance classifica-
tion approaches were extremely interesting to us but ran
into scalability issues. We still believe that those directions
are promising and will explore them further in future work.
The semi-supervised learning direction is also promising but
given that most approaches are better suited to scenarios
where training data is much more limited than in our do-
main, it may not be immediately applicable.

6.2 Design Choices for Ease of Deployment &
Adoption

We made a variety of design choices when building the
rework prevention tool that were motivated by the need to
make the entire system easy to deploy across several com-
panies as well as to maximize it’s adoption.

• Generic Claims Rework Data Model: We designed a
generic data model for claims rework that would allow
us to map a specific company’s data to our model and
automatically do feature selection, model learning and
selection. This was extremely important in getting the
system running at a new company quickly and make
deployment easier.

• Flexible feature construction: Our feature construc-
tion process generates over 100,000 features. Our fea-
ture construction architecture was designed so that
new features can be added very easily and fed into
the experimental pipeline using feature selection tech-
niques to select the best model.

• Automated Experimental Framework: We have set up
a framework where thousands of models are created
by varying training data size, features, time window
for the training set, and parameters for the classifier.
By automating the design and execution of these ex-
periments we are able to do fast and automated model
selection without the need for an expert. We can also
optimize different evaluation metrics for model selec-
tion.

• Claims Workflow Integration: Although we have fo-
cused on the rework prediction and auditor tool in this
paper, an important component of our overall system
is integration with the claims workflow system. We
have designed an interactive tool that, among other
functions, allows an audit team manager to look at
the claims queue and the predictions of the system and
assign claims to the work queues of individual auditors

• Executive Dashboard: Claims rework is a significant
problem in the health insurance industry today. For a
system to be adopted, it is important to quantify it’s
benefits to the executives of the insurance company.
We have designed a dashboard that monitors the over-
all performance of the rework/audit department using
our system and presents charts showing the trends for
overall rework, rework prevented, as well as the mon-
etary benefit accumulated due to this tool over time.

The features we described above are not research con-
tributions but are important to point out since they
are critical to the adoption of a system such as the
ones we describe in this paper.

7. CONCLUSION
In this paper, we described our system to help reduce

claims processing errors using machine learning techniques
by predicting claims that will need to be reworked, and ex-
periment with generating explanations to help the auditors
correct these claims, feature selection, concept drift, and ac-
tive learning to collect feedback from the auditors to improve
over time. This Rework Prevention Tool has been devel-
oped in conjunction with industry experts from Accenture’s

Claims Administration group who currently work with most
of the large insurance companies in the US. We have applied
this system to two large US health insurance companies.
We described our system framework, problem formulation,
evaluation metrics, and experimental results on claims data
from a large US health insurer. We show that our system
produces an order of magnitude better precision (hit rate)
over existing approaches which is accurate enough to poten-
tially result in over $15-25 million in savings each year for a
typical insurer. This in turn would have a large effect on the
healthcare costs as well as help make the healthcare process
smoother. We also described interesting research problems
in this domain as well as design choices made to make the
system easily deployable across health insurance companies.

8. ACKNOWLEDGMENTS
We would like to thank Chad M. Cumby, Dmitriy Fefer-

man, Prof Jaime Carbonell and Prof Alexander I. Rudnicky
for helpful suggestions and comments. We would also like to
thank our partners from Accenture’s Health Claims Payer
practice particularly Lindsey J. Lizardi and Laura J. Jantzen
for insightful domain discussions.

9. REFERENCES
[1] A. Anand and D. Khots. A data mining framework for

identifying claim overpayments for the health
insurance industry. INFORMS Workshop on Data

Mining and Health Informatics, 2008.

[2] C. Curry, R. L. Grossman, D. Locke, S. Vejcik, and
J. Bugajski. Detecting changes in large data sets of
payment card data: a case study. KDD, 2007.

[3] T. G. Dietterich and G. Bakiri. Solving multiclass
learning problems via error-correcting output codes.
JAIR, 1995.

[4] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy. Advances in knowledge discovery and
data mining. AAAI, 1996.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explorations,
2009.

[6] T. Joachims. Transductive inference for text
classification using support vector machines. ICML,
1999.

[7] T. Joachims. Training linear svms in linear time.
KDD, 2006.

[8] O. Maron and T. Lozano-Pérez. A framework for
multiple-instance learning. NIPS, 1998.

[9] McKinsey and Company. Accounting for the cost of us
health care a new look on why americans spend more.
2007.

[10] D. Mladenic and J. Brank. Feature selection using
linear classifier weights: interaction with classification
models. SIGIR, 2004.

[11] National Coalition on Health Care. Health care facts:
Costs. http://nchc.org/sites/default/files/
resources/Fact%20Sheet%20-%20Cost.pdf, Date
URL checked: 16th May 2010.

[12] K. Shih, Y. han Chang, L. Shih, J. Rennie, and
D. Karger. Not too hot, not too cold: The
bundled-svm is just right! ICML Workshop on Text

Learning, 2002.

