
22C h a p t e r

W927

Relational
Databases

To understand how relational databases
store information

To learn to query a database with the Structured
Query Language (SQL)

To connect to a database with Java Database
Connectivity (JDBC)

To write database programs that insert, update, and query
data in a relational database

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

22.1  Organizing Database
Information  W928

Programming Tip 22.1: Stick with the
Standard  W933

Programming Tip 22.2: Avoid Unnecessary
Data Replication  W934

Programming Tip 22.3: Don’t Replicate Columns
in a Table  W934

Special Topic 22.1: Primary Keys and
Indexes  W935

22.2  Queries  W935

Common Error 22.1:  Joining Tables Without
Specifying a Link Condition  W941

Random Fact 22.1: Databases and Privacy  W942

22.3  Installing a Database  W942

22.4  Database Programming
in Java  W947

Programming Tip 22.4: Don’t Hardwire
Database Connection Parameters into
Your Program  W953

Programming Tip 22.5:  Let the Database Do
the Work  W954

Common Error 22.2: Constructing Queries from
Arbitrary Strings  W954

22.5  Application: Entering
an Invoice  W955

Special Topic 22.2: Transactions  W962
Special Topic 22.3: Object-Relational

Mapping  W963
Worked Example 22.1: Programming a Bank

Database  W965

Big Java, Late Objects, Cay Horstmann, Copyright © 2013 John Wiley and Sons, Inc. All rights reserved.

W928

When you store data in a file, you want to be able to add
and remove data, change data items, and find items that
match certain criteria. However, if you have a lot of data,
it can be difficult to carry out these operations quickly and
efficiently. Because data storage is such a common task,
special database management systems have been invented
that let the programmer think in terms of the data rather
than how it is stored. In this chapter, you will learn how
to use SQL, the Structured Query Language, to query and
update information in a relational database, and how to
access database information from Java programs.

22.1  Organizing Database Information

22.1.1  Database Tables

A relational database stores information in tables. Figure 1 shows a typical table. As
you can see, each row in this table corresponds to a product. The column headers cor-
respond to attributes of the product: the product code, description, and unit price.
Note that all items in a particular column have the same type: product codes and
descriptions are strings, unit prices are floating-point numbers. The allowable col-
umn types differ somewhat from one database to another. Table 1 shows types that
are commonly available in relational databases that follow the SQL (for Structured
Query Language; often pronounced “sequel”) standard.

Most relational databases follow the SQL standard. There is no relationship
between SQL and Java—they are different languages. However, as you will see later
in this chapter, you can use Java to send SQL commands to a database. You will see in
the next section how to use SQL commands to carry out queries, but there are other
SQL commands.

For example, here is the SQL command to create a table named Product:
CREATE TABLE Product
(
 Product_Code CHAR(7),
 Description VARCHAR(40),
 Price DECIMAL(10, 2)

)

A relational database
stores information in
tables. Each table
column has a name
and a data type.

SQL (Structured
Query Language) is a
command language
for interacting with a
database.

Figure 1  A Product Table in a Relational Database

Product

Product_Code Description Price

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

22.1 O rganizing Database Information   W929

Table 1 Some Standard SQL Types and
Their Corresponding Java Types

SQL Data Type Java Data Type

INTEGER or INT int

REAL float

DOUBLE double

DECIMAL(m, n) Fixed-point decimal numbers with m total digits and n digits
after the decimal point; similar to BigDecimal

BOOLEAN boolean

VARCHAR(n) Variable-length String of length up to n

CHARACTER(n) or CHAR(n) Fixed-length String of length n

Unlike Java, SQL is not case sensitive. For example, you could spell the command
create table instead of CREATE TABLE. However, as a matter of convention, we will use
uppercase letters for SQL keywords and mixed case for table and column names.

To insert rows into the table, use the INSERT INTO command. Issue one command for
each row, such as

INSERT INTO Product
 VALUES ('257-535', 'Hair dryer', 29.95)

SQL uses single quotes ('), not double quotes, to delimit strings. What if you have a
string that contains a single quote? Rather than using an escape sequence (such as \')
as in Java, you just write the single quote twice, such as

'Sam''s Small Appliances'

If you create a table and subsequently want to remove it, use the DROP TABLE command
with the name of the table. For example,

DROP TABLE Test

22.1.2  Linking Tables

If you have objects whose instance variables are strings, numbers, dates, or other
types that are permissible as table column types, then you can easily store them as
rows in a database table. For example, consider a Java class Customer:

public class Customer
{
 private String name;
 private String address;
 private String city;
 private String state;
 private String zip;
 . . .
}

Use the SQL
commands
CREATE TABLE and
INSERT INTO to add
data to a database.

W930  Chapter 22  Relational Databases

It is simple to come up with a database table structure that allows you to store cus-
tomers—see Figure 2.

For other objects, it is not so easy. Consider an invoice. Each invoice object con-
tains a reference to a customer object:

public class Invoice
{
 private int invoiceNumber;
 private Customer theCustomer;
 . . .
}

Because Customer isn’t a standard SQL type, you might consider simply entering all the
customer data into the invoice table—see Figure 3. However, this is not a good idea.
If you look at the sample data in Figure 3, you will notice that Sam’s Small Appliances
had two invoices, numbers 11731 and 11733. Yet all information for the customer was
replicated in two rows.

This replication has two problems. First, it is wasteful to store the same infor-
mation multiple times. If the same customer places many orders, then the replicated
information can take up a lot of space. More importantly, the replication is danger-
ous. Suppose the customer moves to a new address. Then it would be an easy mistake
to update the customer information in some of the invoice records and leave the old
address in place in others.

In a Java program, neither of these problems occurs. Multiple Invoice objects can
contain references to a single shared Customer object.

Figure 2  A Customer Table

Customer

Name Address City State Zip

VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

Sam’s Small Appliances 100 Main Street Anytown CA 98765

Figure 3  A Poor Design for an Invoice Table with Replicated Customer Data

Invoice

Invoice_
Number

Customer_
Name

Customer_
Address

Customer_
City

Customer_
State

Customer_
Zip

. . .

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5) . . .

11731 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 . . .

11732 Electronics
Unlimited

1175 Liberty Ave Pleasantville MI 45066 . . .

11733 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 . . .

22.1 O rganizing Database Information   W931

Figure 4  Two Tables for Invoice and Customer Data

Invoice

Invoice_
Number

Customer_
Number

Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.95

11733 3175 0

Customer

Customer_
Number

Name Address City State Zip

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

The first step in achieving the same effect in a database is to organize your data into
multiple tables as in Figure 4. Dividing the columns into two tables solves the
replication problem. The customer data are no longer replicated—the Invoice table
contains no customer information, and the Customer table contains a single record
for each customer. But how can we refer to the customer to which an invoice is issued?
Notice in Figure 4 that there is now a Customer_Number column in both the Cus-
tomer table and the Invoice table. Now all invoices for Sam’s Small Appliances share
only the customer number. The two tables are linked by the Customer_Number
field. To find out more details about this customer, you need to use the customer
number to look up the customer in the Customer table.

Note that the customer number is a unique identifier. We introduced the customer
number because the customer name by itself may not be unique. For example, there
may well be multiple Electronics Unlimited stores in various locations. Thus, the
customer name alone does not uniquely identify a record (a row of data), so we can-
not use the name as a link between the two tables.

In database terminology, a column (or combination of columns) that uniquely
identifies a row in a table is called a primary key. In our Customer table, the Cus-
tomer_Number column is a primary key. You need a primary key if you want to
establish a link from another table. For example, the Customer table needs a primary
key so that you can link customers to invoices.

When a primary key is linked to another table, the matching column (or combina-
tion of columns) in that table is called a foreign key. For example, the Customer_
Number in the Invoice table is a foreign key, linked to the primary key in the Cus-
tomer table. Unlike primary keys, foreign keys need not be unique. For example, in
our Invoice table we have several records that have the same value for the Customer_
Number foreign key.

You should avoid
rows with replicated
data. Instead,
distribute the data
over multiple tables.

A primary key is a
column (or set of
columns) whose
value uniquely
specifies a
table record.

A foreign key is a
reference to a
primary key in a
linked table.

W932  Chapter 22  Relational Databases

22.1.3  Implementing Multi-Valued Relationships

Each invoice is linked to exactly one customer. That is called a single-valued relation-
ship. On the other hand, each invoice has many line items. (As in Chapter 12, a line
item identifies the product, quantity, and unit price.) Thus, there is a multi-valued
relationship between invoices and line items. In the Java class, the LineItem objects are
stored in an array list:

public class Invoice
{
 private int invoiceNumber;
 private Customer theCustomer;
 private ArrayList<LineItem> items;
 private double payment;
 . . .
}

However, in a relational database, you need to store the information in tables. Sur-
prisingly many programmers, when faced with this situation, commit a major faux
pas and replicate columns, one for each line item, as in Figure 5 below.

Clearly, this design is not satisfactory. What should we do if there are more than
three line items on an invoice? Perhaps we should have 10 line items instead? But that
is wasteful if the majority of invoices have only a couple of line items, and it still does
not solve our problem for the occasional invoice with lots of line items.

Instead, distribute the information into two tables: one for invoices and another
for line items. Link each line item back to its invoice with an Invoice_Number for-
eign key in the LineItem table—see Figure 6.

Figure 5  A Poor Design for an Invoice Table with Replicated Columns

Invoice

Invoice_
Number

Customer_
Number

Product_
Code1

Quantity1
Product_
Code2

Quantity2
Product_
Code3

Quantity3 Payment

INTEGER INTEGER CHAR(7) INTEGER CHAR(7) INTEGER CHAR(7) INTEGER DECIMAL(10, 2)

11731 3175 116-064 3 257-535 1 643-119 2 0

Figure 6  Linked Invoice and LineItem Tables Implement a Multi-Valued Relationship

LineItem

Invoice_Number Product_Code Quantity

INTEGER CHAR(7) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

Invoice

Invoice_Number Customer_Number Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

22.1 O rganizing Database Information   W933

Figure 7  The Links Between the Tables in the Sample Database

Customer_Number

Invoice_Number

Product_Code

Invoice Customer

LineItem

Product

In a similar fashion, the LineItem table links to the Product table via the Product
table’s Product_Code primary key. Our database now consists of four tables:

•	 Invoice
•	 Customer
•	 LineItem
•	 Product

Figure 7 shows the links between these tables. In the next section you will see how
to query this database for information about invoices, customers, and products. The
queries will take advantage of the links between the tables.

1.	 Would a telephone number be a good primary key for a customer table?
2.	 In the database of Section 22.1.3, what are all the products that customer 3176

ordered?

Practice It	 Now you can try these exercises at the end of the chapter: R22.2, R22.4, R22.5.

Stick with the Standard

The Java language is highly standardized. You will rarely find compilers that allow you to
specify Java code that differs from the standard, and if they do, it is always a compiler bug.
However, SQL implementations are often much more forgiving. For example, many SQL
vendors allow you to use a Java-style escape sequence such as

'Sam\'s Small Appliances'

in a SQL string. The vendor probably thought that this would be “helpful” to programmers
who are familiar with Java or C. (The C language uses the same escape mechanism for denot-
ing special characters.)

Implement one-to-
many relationships
with linked tables,
not replicated
columns.

S e l f C h e c k

Programming Tip 22.1

W934  Chapter 22  Relational Databases

However, this is an illusion. Deviating from the standard limits portability. Suppose you
later want to move your database code to another vendor, perhaps to improve performance or
to lower the cost of the database software. If the other vendor hasn’t implemented a particular
deviation, then your code will no longer work and you need to spend time fixing it.

To avoid these problems, you should stick with the standard. With SQL, you cannot rely
on your database to flag all errors—some of them may be considered “helpful” extensions.
That means that you need to know the standard and have the discipline to follow it. (See A
Guide to the SQL Standard: A User’s Guide to the Standard Database Language, by Chris J.
Date and Hugh Darwen (Addison-Wesley, 1996), for more information.)

Avoid Unnecessary Data Replication

It is very common for beginning database designers to replicate data. When replicating data in
a table, ask yourself if you can move the replicated data into a separate table and use a key, such
as a code or ID number, to link the tables.

Consider this example in an Invoice table:

Invoice

. . . Product_Code Description Price . . .

. . . CHAR(7) VARCHAR(40) DECIMAL(10, 2) . . .

. . . 116-064 Toaster 24.95 . . .

. . . 116-064 Toaster 24.95 . . .

.

As you can see, some product information is replicated. Is this replication an error? It depends.
The product description for the product with code 116-064 is always going to be “Toaster”.
Therefore, that correspondence should be stored in an external Product table.

The product price, however, can change over time. When it does, the old invoices don’t
automatically use the new price. Thus, it makes sense to store the price that the customer was
actually charged in an Invoice table. The current list price, however, is best stored in an exter-
nal Product table.

Don’t Replicate Columns in a Table

If you find yourself numbering columns in a table with suffixes 1, 2, and so forth (such as
Quantity1, Quantity2, Quantity3), then you are probably on the wrong track. How do you
know there are exactly three quantities? In that case, it’s time for another table.

Add a table to hold the information for which you replicated the columns. In that table, add
a column that links back to a key in the first table, such as the invoice number in our example.
By using an additional table, you can implement a multi-valued relationship.

Programming Tip 22.2

Programming Tip 22.3

22.2  Queries   W935

Primary Keys and Indexes

Recall that a primary key is a column (or combination of columns) that uniquely identifies
a row in a table. When a table has a primary key, then the database can build an index file: a
file that stores information on how to access a row quickly when the primary key is known.
Indexing can greatly increase the speed of database queries.

If the primary key is contained in a single column, then you can tag the column with the
PRIMARY KEY attribute, like this:

CREATE TABLE Product
(
 Product_Code CHAR(7) PRIMARY KEY,
 Description VARCHAR(40),
 Price DECIMAL(10, 2)
)

If the primary key is contained in multiple columns, then add a PRIMARY KEY clause to the end of
the CREATE TABLE command, like this:

CREATE TABLE LineItem
(
 Invoice_Number INTEGER,
 Product_Code CHAR(7),
 Quantity INTEGER,
 PRIMARY KEY (Invoice_Number, Product_Code)
)

Occasionally, one can speed queries up by building secondary indexes: index files that index
other column sets, which are not necessarily unique. That is an advanced technique that we
will not discuss here.

22.2  Queries
Let’s assume that the tables in our database have been created and that records have
been inserted. Once a database is filled with data, you will want to query the database
for information, such as

•	 What are the names and addresses of all customers?

•	 What are the names and addresses of all customers in California?

•	 What are the names and addresses of all customers who bought toasters?

•	 What are the names and addresses of all customers with unpaid invoices?

In this section you will learn how to formulate simple and complex queries in SQL.
We will use the data shown in Figure 8 for our examples.

Special Topic 22.1

W936  Chapter 22  Relational Databases

22.2.1 

Figure 8  A Sample Database

Invoice

Invoice_
Number

Customer_
Number

Payment

INTEGER INTEGER DECIMAL(10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

Product

Product_Code Description Price

CHAR(7) VARCHAR(40) DECIMAL(10, 2)

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

Customer

Customer_
Number

Name Address City State Zip

INTEGER VARCHAR(40) VARCHAR(40) VARCHAR(30) CHAR(2) CHAR(5)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

LineItem

Invoice_
Number

Product_
Code

Quantity

INTEGER CHAR(7) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

Simple Queries

In SQL, you use the SELECT command to issue queries. For example, the command to
select all data from the Customer table is

SELECT * FROM Customer

The result is

Customer_
Number

Name Address City State Zip

3175 Sam’s Small
Appliances

100 Main Street Anytown CA 98765

3176 Electronics
Unlimited

1175 Liberty Ave Pleasantville MI 45066

Use the SQL SELECT
command to query
a database.

22.2  Queries   W937

Figure 9  An Interactive SQL Tool

The outcome of the query is a view—a set of rows and columns that provides a “win-
dow” through which you can see some of the database data. If you select all rows and
columns from a single table, of course you get a view into just that table.

Many database systems have tools that let you issue interactive SQL commands—
Figure 9 shows a typical example. When you issue a SELECT command, the tool dis-
plays the resulting view. You may want to skip ahead to Section 22.3 and install a
database. Or perhaps your computer lab has a database installed already. Then you
can run the interactive SQL tool of your database and try out some queries.

22.2.2  Selecting Columns

Often, you don’t care about all columns in a table. Suppose your traveling salesper-
son is planning a trip to all customers. To plan the route, the salesperson wants to
know the cities and states of all customers. Here is the query:

SELECT City, State FROM Customer

The result is

City State

Anytown CA

Pleasantville MI

W938  Chapter 22  Relational Databases

As you can see, the syntax for selecting columns is straightforward. Simply specify
the names of the columns you want, separated by commas.

22.2.3  Selecting Subsets

You just saw how you can restrict a view to show selected columns. Sometimes you
want to select certain rows that fit a particular criterion. For example, you may want
to find all customers in California. Whenever you want to select a subset, you use the
WHERE clause, followed by the condition that describes the subset. Here is an example:

SELECT * FROM Customer WHERE State = 'CA'

The result is

Customer_
Number

Name Address City State Zip

3175 Sam’s Small
Appliances

100 Main Street Anytown CA 98765

You have to be a bit careful with expressing the condition in the WHERE clause, because
SQL syntax differs from the Java syntax. As you already know, in SQL you use single
quotes to delimit strings, such as 'CA'. You also use a single =, not a double ==, to test
for equality. To test for inequality, you use the <> operator. For example

SELECT * FROM Customer WHERE State <> 'CA'

selects all customers that are not in California.
You can match patterns with the LIKE operator. The right-hand side must be a string

that can contain the special symbols _ (match exactly one character) and % (match any
character sequence). For example, the expression

Name LIKE '_o%'

matches all strings whose second character is an “o”. Thus, “Toaster” is a match but
“Crowbar” is not.

You can combine expressions with the logical connectives AND, OR, and NOT. (Do not
use the Java &&, ||, and ! operators.) For example

SELECT *
 FROM Product
 WHERE Price < 100
 AND Description <> 'Toaster'

selects all products with a price less than 100 that are not toasters.
Of course, you can select both row and column subsets, such as
SELECT Name, City FROM Customer WHERE State = 'CA'

22.2.4  Calculations

Suppose you want to find out how many customers there are in California. Use the
COUNT function:

SELECT COUNT(*) FROM Customer WHERE State = 'CA'

The WHERE clause
selects data that
fulfill a condition.

22.2  Queries   W939

In addition to the COUNT function, there are four other functions: SUM, AVG (average), MAX,
and MIN.

The * means that you want to calculate entire records. That is appropriate only for
the COUNT function. For other functions, you have to access a specific column. Put the
column name inside the parentheses:

SELECT AVG(Price) FROM Product

22.2.5  Joins

The queries that you have seen so far all involve a single table. However, the informa-
tion that you want is usually distributed over multiple tables. For example, suppose
you are asked to find all invoices that include a line item for a car vacuum. From the
Product table, you can issue a query to find the product code:

SELECT Product_Code
 FROM Product
 WHERE Description = 'Car vacuum'

You will find out that the car vacuum has product code 643-119. Then you can issue
a second query:

SELECT Invoice_Number
 FROM LineItem
 WHERE Product_Code = '643-119'

But it makes sense to combine these two queries so that you don’t have to keep track
of the intermediate result. When combining queries, note that the two tables are
linked by the Product_Code field. We want to look at matching rows in both tables.
In other words, we want to restrict the search to rows where

Product.Product_Code = LineItem.Product_Code

Here, the syntax
TableName.ColumnName

denotes the column in a particular table. Whenever a query involves multiple tables,
you should specify both the table name and the column name. Thus, the combined
query is

SELECT LineItem.Invoice_Number
 FROM Product, LineItem
 WHERE Product.Description = 'Car vacuum'
 AND Product.Product_Code = LineItem.Product_Code

The result is

Invoice_Number

11731

11733

In this query, the FROM clause contains the names of multiple tables, separated by com-
mas. (It doesn’t matter in which order you list the tables.) Such a query is often called
a join because it involves joining multiple tables.

A join is a query
that involves
multiple tables.

W940  Chapter 22  Relational Databases

You may want to know in what cities hair dryers are popular. Now you need to add
the Customer table to the query—it contains the customer addresses. The customers
are referenced by invoices, so you need that table as well. Here is the complete query:

SELECT Customer.City, Customer.State, Customer.Zip
 FROM Product, LineItem, Invoice, Customer
 WHERE Product.Description = 'Hair dryer'
 AND Product.Product_Code = LineItem.Product_Code
 AND LineItem.Invoice_Number = Invoice.Invoice_Number
 AND Invoice.Customer_Number = Customer.Customer_Number

The result is

City State Zip

Anytown CA 98765

Whenever you formulate a query that involves multiple tables, remember to:

•	 List all tables that are involved in the query in the FROM clause.
•	 Use the TableName.ColumnName syntax to refer to column names.
•	 List all join conditions (TableName1.ColumnName1 = TableName2.ColumnName2)

in the WHERE clause.

As you can see, these queries can get a bit complex. However, database manage-
ment systems are very good at answering these queries (see Programming Tip 22.5
on page W954). One remarkable aspect of SQL is that you describe what you want, not
how to find the answer. It is entirely up to the database management system to come
up with a plan for how to find the answer to your query in the shortest number of
steps.

Commercial database manufacturers take great pride in coming up with clever
ways to speed up queries: query optimization strategies, caching of prior results, and
so on. In this regard, SQL is a very different language from Java. SQL statements are
descriptive and leave it to the database to determine how to execute them. Java state-
ments are prescriptive—you spell out exactly the steps you want your program to
carry out.

22.2.6  Updating and Deleting Data

Up to now, you have been shown how to formulate increasingly complex SELECT que-
ries. The outcome of a SELECT query is a result set that you can view and analyze. Two
related statement types, UPDATE and DELETE, don’t produce a result set. Instead, they
modify the database. The DELETE statement is the easier of the two. It simply deletes
the rows that you specify. For example, to delete all customers in California, you
issue the statement

DELETE FROM Customer WHERE State = 'CA'

The UPDATE query allows you to update columns of all records that fulfill a certain
condition. For example, here is how you can add another unit to the quantity of every
line item in invoice number 11731:

UPDATE LineItem
 SET Quantity = Quantity + 1
 WHERE Invoice_Number = '11731'

The UPDATE and
DELETE SQL
commands modify
the data in
a database.

22.2  Queries   W941

You can update multiple column values by specifying multiple update expressions in
the SET clause, separated by commas.

Both the DELETE and the UPDATE statements return a value, namely the number of
rows that are deleted or updated.

3.	 How do you query the names of all customers that are not from Alaska or
Hawaii?

4.	 How do you query all invoice numbers of all customers in Hawaii?

Practice It	 Now you can try these exercises at the end of the chapter: R22.7, R22.13, R22.14.

Joining Tables Without Specifying a Link Condition

If you select data from multiple tables without a restriction, the result is somewhat surpris-
ing—you get a result set containing all combinations of the values, whether or not one of the
combinations exists with actual data. For example, the query

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer

returns the result set

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Sam’s Small Appliances

11733 Sam’s Small Appliances

11731 Electronics Unlimited

11732 Electronics Unlimited

11733 Electronics Unlimited

As you can see, the result set contains all six combinations of invoice numbers (11731, 11732,
11733) and customer names (Sam’s Small Appliances and Electronics Unlimited), even though
three of those combinations don’t occur with real invoices. You need to supply a WHERE clause
to restrict the set of combinations. For example, the query

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer
 WHERE Invoice.Customer_Number = Customer.Customer_Number

yields

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Electronics Unlimited

11733 Sam’s Small Appliances

S e l f C h e c k

Common Error 22.1

W942  Chapter 22  Relational Databases

22.3  Installing a Database
A wide variety of database systems are available. Among them are

•	 Production-quality databases, such as Oracle, IBM DB2, Microsoft SQL Server,
PostgreSQL, or MySQL.

•	 Lightweight Java databases, such as Apache Derby.
•	 Desktop databases, such as Microsoft Access.

Which one should you choose for learning database programming? That depends
greatly on your available budget, computing resources, and experience with install-
ing complex software. In a laboratory environment with a trained administrator, it
makes a lot of sense to install a production-quality database. Lightweight Java

Most companies use
computers to keep

huge databases of customer records
and other business information. Data
bases not only lower the cost of doing
business, they improve the quality
of service that companies can offer.
Nowadays it is almost unimaginable
how time-consuming it used to be to
withdraw money from a bank branch
or to make travel reservations.

As these databases became ubiqui-
tous, they started creating problems
for citizens. Consider the “no fly list”
maintained by the U.S. government,
which lists names used by suspected
terrorists. On March 1, 2007, Professor
Walter Murphy, a constitutional scholar
of Princeton University and a decorated
former Marine, was denied a boarding
pass. The airline employee asked him,
“Have you been in any peace marches?
We ban a lot of people from flying
because of that.” As Murphy tells it, “I
explained that I had not so marched
but had, in September 2006, given a
lecture at Princeton, televised and put
on the Web, highly critical of George
Bush for his many violations of the con-
stitution. ‘That’ll do it,’ the man said.”

We do not actually know if Professor
Murphy’s name was on the list because
he was critical of the Bush adminis
tration or because some other poten-
tially dangerous person had traveled
under the same name. Travelers with
similar misfortunes had serious diffi-

culties trying to get themselves off the
list.

Problems such as these have
become commonplace. Companies
and the government routinely merge
multiple databases, derive information
about us that may be quite inaccurate,
and then use that information to make
decisions. An insurance company may
deny coverage, or charge a higher pre-
mium, if it finds that you have too many
relatives with a certain disease. You
may be denied a job because of a credit
or medical report. You do not usually
know what information about you is
stored or how it is used. In cases where
the information can be checked—such
as credit reports—it is often difficult to
correct errors.

Another issue of concern is privacy.
Most people do something, at one time
or another in their lives, that they do
not want everyone to know about. As
judge Louis Brandeis wrote in 1928,
“Privacy is the right to be alone––the
most comprehensive of rights, and the
right most valued by civilized man.”
When employers can see your old
Facebook posts, divorce lawyers have
access to tollroad records, and Google
mines your e-mails and searches to
present you “targeted” advertising, you
have little privacy left.

The 1948 “universal declaration of
human rights” by the United Nations
states, “No one shall be subjected to
arbitrary interference with his privacy,

family, home or correspondence,
nor to attacks upon his honour and
reputation. Everyone has the right to
the protection of the law against such
interference or attacks.” The United
States has surprisingly few legal pro-
tections against privacy invasion,
apart from federal laws protecting stu-
dent records and video rentals (the lat-
ter was passed after a Supreme Court
nominee’s video rental records were
published). Other industrialized coun-
tries have gone much further and rec-
ognize every citizen’s right to control
what information about them should
be communicated to others and under
what circumstances.

If you pay road or bridge tolls with an
electronic pass, your records may not
be private.

Random Fact 22.1  Databases and Privacy

22.3 I nstalling a Database   W943

databases are

Figure 10  JDBC Architecture

Database
ServerJava Program JDBC Driver Database

Tables

much easier to install and work on a variety of platforms. This makes
them a good choice for the beginner. Desktop databases have limited SQL support
and can be difficult to configure for Java programming.

In addition to a database, you need a JDBC driver. The acronym JDBC stands
for Java Database Connectivity, the name of the technology that enables Java pro-
grams to interact with databases. When your Java program issues SQL commands,
the driver forwards them to the database and lets your program analyze the results
(see Figure 10).

Different databases require different drivers, which may be supplied by either the
database manufacturer or a third party. You need to locate and install the driver that
matches your database.

If you work in a computing laboratory, someone will have installed a database for
you, and you should ask your lab for instructions on how to use it. If you need to
provide your own database, we suggest that you choose Apache Derby. It is included
with the Java Development Kit. You can also download it separately from http://
db.apache.org/derby/.

You should run a test program to check that your database is working correctly.
You will find the code for the test program at the end of this section. The following
section describes the implementation of the test program in detail.

If you use Apache Derby, then follow these instructions:

1.	Locate the JDBC driver file derby.jar and copy it into the ch22/section_3
directory of the companion code for this book.

2.	Open a shell window, change to the ch22/section_3 directory, and run
javac TestDB.java
java -classpath derby.jar;. TestDB database.properties

If you run Linux, UNIX, or Mac OS X, use a semicolon, not a colon, as a path
separator:

java -classpath derby.jar:. TestDB database.properties

3.	If you followed the test instructions precisely, you should see one line of
output with the name “Romeo”. You may then skip the remainder of this
section.

If you install a database other than the one included with Java, you will need to set
aside some time to carry out the installation process. Detailed instructions for install-
ing a database vary widely. Here we give you a general sequence of steps on how to
install a database and test your installation:

1.	Install the database program.
2.	Start the database. With most database systems (but not some of the light-

weight Java database systems), you need to start the database server before you

You need a JDBC
(Java Database
Connectivity) driver
to access a database
from a Java program.

W944  Chapter 22  Relational Databases

can carry out any database operations. Read the installation instructions for
details.

3.	Set up user accounts. This typically involves running an administration pro-
gram, logging in as administrator with a default administration account, and
adding user names and passwords. If you are the only user of the database, you
may simply be able to use a default account. Again, details vary greatly among
databases, and you should consult the documentation.

4.	Run a test. Locate the program that allows you to execute interactive SQL
instructions. Run the program and issue the following SQL instructions:

CREATE TABLE Test (Name VARCHAR(20))
INSERT INTO Test VALUES ('Romeo')
SELECT * FROM Test
DROP TABLE Test

At this point, you should get a display that shows a single row and column of
the Test database, containing the string “Romeo”. If not, carefully read the
documentation of your SQL tool to see how you need to enter SQL state-
ments. For example, with some SQL tools, you need a special terminator for
each SQL statement.

Next, locate the JDBC driver and run a sample Java program to verify that the instal-
lation was successful.

Here are the steps for testing the JDBC driver:

1.	Every JDBC driver contains some Java code that your Java programs require
to connect to the database. From the JDBC driver documentation, find the
class path for the driver. Here is a typical example—the class path component
for the Apache Derby JDBC driver that is included in the Java Development
Kit.

c:\jdk1.7.0\db\lib\derby.jar

One version of the Oracle database uses a class path
/usr/local/oracle/jdbc/classes111b.zip

You will find this information in the documentation of your database system.
2.	If your JDBC driver is not fully compliant with the JDBC4 standard, you need

to know the name of the driver class. For example, the Oracle database uses a
driver

oracle.jdbc.driver.OracleDriver

Your database documentation will have this information.
3.	Find the name of the database URL that your driver expects. All database

URLs have the format
jdbc:subprotocol:driver-specific data

The subprotocol is a code that identifies the driver manufacturer, such as derby
or oracle. The driver-specific data encode the database name and the location of
the database. Here are typical examples:

jdbc:derby:InvoiceDB;create=true
jdbc:oracle:thin:@larry.mathcs.sjsu.edu:1521:InvoiceDB

Again, consult your JDBC driver information for details on the format of the
database URL and how to specify the database that you use.

Make sure the
JDBC driver is on
the class path when
you launch the
Java program.

22.3 I nstalling a Database   W945

4.	In order to run the TestDB.java program at the end of this section, edit the file
database.properties and supply

•	 The driver class name (if required).
•	 The database URL.
•	 Your database user name.
•	 Your database password.

With lightweight Java databases such as Apache Derby, you usually specify a
blank user name and password.

5.	Compile the program as
javac TestDB.java

6.	Run the program as
java -classpath driver_class_path;. TestDB database.properties

In UNIX/Linux/Mac OS X, use a : separator in the class path:
java -classpath driver_class_path:. TestDB database.properties

If everything works correctly, you will get an output that lists all data in the
Test table. If you followed the test instructions precisely, you will see one line
of output with the name “Romeo”.

Here is the test program. We will explain the Java instructions in this program in the
following section.

section_3/TestDB.java

1 import java.io.File
2 import java.sql.Connection;
3 import java.sql.ResultSet;
4 import java.sql.Statement;
5
6 /**
7 Tests a database installation by creating and querying
8 a sample table. Call this program as
9 java -classpath driver_class_path;. TestDB propertiesFile

10 */
11 public class TestDB
12 {
13 public static void main(String[] args) throws Exception
14 {
15 if (args.length == 0)
16 {
17 System.out.println(
18 "Usage: java -classpath driver_class_path"
19 + File.pathSeparator
20 + ". TestDB propertiesFile");
21 return;
22 }
23
24 SimpleDataSource.init(args[0]);
25
26 Connection conn = SimpleDataSource.getConnection();
27 try
28 {

To connect to the
database, you need
to specify a database
URL, user name,
and password.

W946  Chapter 22  Relational Databases

29 Statement stat = conn.createStatement();
30
31 stat.execute("CREATE TABLE Test (Name VARCHAR(20))");
32 stat.execute("INSERT INTO Test VALUES ('Romeo')");
33
34 ResultSet result = stat.executeQuery("SELECT * FROM Test");
35 result.next();
36 System.out.println(result.getString("Name"));
37
38 stat.execute("DROP TABLE Test");
39 }
40 finally
41 {
42 conn.close();
43 }
44 }
45 }

section_3/SimpleDataSource.java

1 import java.sql.Connection;
2 import java.sql.DriverManager;
3 import java.sql.SQLException;
4 import java.io.FileInputStream;
5 import java.io.IOException;
6 import java.util.Properties;
7
8 /**
9 A simple data source for getting database connections.

10 */
11 public class SimpleDataSource
12 {
13 private static String url;
14 private static String username;
15 private static String password;
16
17 /**
18 Initializes the data source.
19 @param fileName the name of the property file that
20 contains the database driver, URL, username, and password
21 */
22 public static void init(String fileName)
23 throws IOException, ClassNotFoundException
24 {
25 Properties props = new Properties();
26 FileInputStream in = new FileInputStream(fileName);
27 props.load(in);
28
29 String driver = props.getProperty("jdbc.driver");
30 url = props.getProperty("jdbc.url");
31 username = props.getProperty("jdbc.username");
32 if (username == null) { username = ""; }
33 password = props.getProperty("jdbc.password");
34 if (password == null) { password = ""; }
35 if (driver != null) { Class.forName(driver); }
36 }
37
38 /**
39 Gets a connection to the database.
40 @return the database connection

22.4  Database Programming in Java   W947

41 */
42 public static Connection getConnection() throws SQLException
43 {
44 return DriverManager.getConnection(url, username, password);
45 }
46 }

section_3/database.properties (for Apache Derby)

jdbc.url=jdbc:derby:BigJavaDB;create=true
With other databases, you may need to add entries such as these
jdbc.username=admin
jdbc.password=secret
jdbc.driver=org.apache.derby.jdbc.EmbeddedDriver

5.	 After installing a database system, how can you test that it is properly installed?
6.	 You are starting a Java database program to use the Apache Derby database and

get the following error message:
Exception in thread "main" java.sql.SQLException: No suitable driver found for
jdbc:derby:BigJavaDB;create=true

What is the most likely cause of this error?

Practice It	 Now you can try these exercises at the end of the chapter: R22.18, R22.19, R22.20.

22.4  Database Programming in Java

22.4.1  Connecting to the Database

To connect to a database, you need an object of the Connection class. The following
shows you how to obtain such a connection. With older versions of the JDBC stan-
dard, you first need to manually load the database driver class. Starting with JDBC4
(which is a part of Java 6), the driver is loaded automatically. If you use Java 6 or later
and a fully JDBC4 compatible driver, you can skip the loading step. Otherwise, use
the following code:

String driver = . . .;
Class.forName(driver); // Load driver

Next, you ask the DriverManager for a connection. You need to initialize the url, user-
name, and password strings with the values that apply to your database:

String url = . . .;
String username = . . .;
String password = . . .;
Connection conn = DriverManager.getConnection(url, username, password);

When you are done issuing your database commands, close the database connection
by calling the close method:

conn.close();

This is actually a somewhat simplistic view of connection management. Two prob-
lems occur in practice. Larger programs (such as the bank example in Worked

S e l f C h e c k

Use a Connection
object to access a
database from a
Java program.

W948  Chapter 22  Relational Databases

Example 22.1) need to connect to the database from many classes. You don’t want
to propagate the database login information to a large number of classes. Also, it is
usually not feasible to use a single connection for all database requests. In particular,
as you will see in Chapter 24, a container for web applications can run many simul-
taneous web page requests from different browsers. Each page request needs its own
database connection. But because opening a database connection is quite slow and
page requests come so frequently, database connections need to be pooled rather than
closed and reopened. The details can be complex, and there is currently no standard
implementation available.

It is always a good idea to decouple connection management from the other data-
base code. We supply a SimpleDataSource class for this purpose; the implementation is
at the end of Section 22.3. This class is a very simple tool for connection management.
At the beginning of your program, call the static init method with the name of the
database configuration file, for example

SimpleDataSource.init("database.properties");

The configuration file is a text file that may contain the following lines:
jdbc.driver= . . .
jdbc.url= . . .
jdbc.username= . . .
jdbc.password= . . .

The init method uses the Properties class, which is designed to make it easy to read
such a file. The Properties class has a load method to read a file of key/value pairs from
a stream:

Properties props = new Properties();
FileInputStream in = new FileInputStream(fileName);
props.load(in);

The getProperty method returns the value of a given key:
String driver = props.getProperty("jdbc.driver");

You don’t actually have to think about this—the init method takes care of the details.
Whenever you need a connection, call
Connection conn = SimpleDataSource.getConnection();

You need to close the connection by calling
conn.close();

when you are done using it.
Real-world connection managers have slightly different methods, but the basic

principle is the same.

22.4.2  Executing SQL Statements

Once you have a connection, you can use it to create Statement objects. You need
Statement objects to execute SQL statements.

Statement stat = conn.createStatement();

The execute method of the Statement class executes a SQL statement. For example,
stat.execute("CREATE TABLE Test (Name CHAR(20))");
stat.execute("INSERT INTO Test VALUES ('Romeo')");

A Connection object
can create Statement
objects that are
used to execute
SQL commands.

22.4  Database Programming in Java   W949

To issue a query, use the executeQuery method of the Statement class. The query result is
returned as a ResultSet object. For example,

String query = "SELECT * FROM Test";
ResultSet result = stat.executeQuery(query);

You will see in the next section how to use the ResultSet object to analyze the result of
the query.

For UPDATE statements, you can use the executeUpdate method. It returns the number
of rows affected by the statement:

String command = "UPDATE LineItem"
 + " SET Quantity = Quantity + 1"
 + " WHERE Invoice_Number = '11731'";
int count = stat.executeUpdate(command);

If your statement has variable parts, then you should use a PreparedStatement instead:
String query = "SELECT * WHERE Account_Number = ?";
PreparedStatement stat = conn.prepareStatement(query);

The ? symbols in the query string denote variables that you fill in when you make an
actual query. You call a set method for that purpose, for example

stat.setString(1, accountNumber);

The first parameter of the set methods denotes the variable position: 1 is the first ?, 2
the second, and so on. There are also methods setInt and setDouble for setting numeri-
cal variables. After you set all variables, you call executeQuery or executeUpdate.

Finally, you can use the generic execute method to execute arbitrary SQL state-
ments. It returns a boolean value to indicate whether the SQL command yields a result
set. If so, you can obtain it with the getResultSet method. Otherwise, you can get the
update count with the getUpdateCount method.

String command = . . .;
boolean hasResultSet = stat.execute(command);
if (hasResultSet)
{
 ResultSet result = stat.getResultSet();
 . . .
}
else
{
 int count = stat.getUpdateCount();
 . . .
}

You can reuse a Statement or PreparedStatement object to execute as many SQL com-
mands as you like. However, for each statement, you should only have one active
ResultSet. If your program needs to look at several result sets at the same time, then
you need to create multiple Statement objects.

When you are done using a ResultSet, you should close it before issuing a new
query on the same statement.

result.close();

When you are done with a Statement object, you should close it. That automatically
closes the associated result set.

stat.close();

When you close a connection, it automatically closes all statements and result sets.

The result of a SQL
query is returned in a
ResultSet object.

W950  Chapter 22  Relational Databases

22.4.3  Analyzing Query Results

A ResultSet lets you fetch the query result, one row at a time. You iterate through
the rows, and for each row, you can inspect the column values. Like the collection
iterators that you saw in Chapter 15, the ResultSet class has a next method to visit the
next row. However, the behavior of the next method is somewhat different. The next
method does not return any data; it returns a boolean value that indicates whether
more data are available. Moreover, when you first get a result set from the execute-
Query method, no row data are available. You need to call next to move to the first row.
This appears curious, but it makes the iteration loop simple:

while (result.next())
{
 Inspect column data from the current row.
}

If the result set is completely empty, then the first call to result.next() returns false,
and the loop is never entered. Otherwise, the first call to result.next() fetches the
data for the first row from the database. As you can see, the loop ends when the next
method returns false, which indicates that all rows have been fetched.

Once the result set object has fetched a particular row, you can inspect its columns.
Various get methods return the column value formatted as a number, string, date, and
so on. In fact, for each data type, there are two get methods. One of them has an inte-
ger argument that indicates the column position. The other has a string argument for
the column name. For example, you can fetch the product code as

String productCode = result.getString(1);

or
String productCode = result.getString("Product_Code");

Note that the integer index starts at one, not at zero; that is, getString(1) inspects the
first column. Database column indexes are different from array subscripts.

Accessing a column by an integer index is marginally faster and perfectly accept-
able if you explicitly named the desired columns in the SELECT statement, such as

SELECT Invoice_Number FROM Invoice WHERE Payment = 0

However, if you make a SELECT * query, it is a good idea to use a column name instead
of a column index. It makes your code easier to read, and you don’t have to update
the code when the column layout changes.

In this example, you saw the getString method in action. To fetch a number, use the
getInt and getDouble methods instead, for example

int quantity = result.getInt("Quantity");
double unitPrice = result.getDouble("Price");

22.4.4  Result Set Metadata

When you have a result set from an unknown table, you may want to know the names
of the columns. You can use the ResultSetMetaData class to find out about properties of
a result set. Start by requesting the metadata object from the result set:

ResultSetMetaData metaData = result.getMetaData();

Then you can get the number of columns with the getColumnCount method. The
getColumnLabel method gives you the column name for each column. Finally, the

Metadata are data
about an object.
Result set metadata
describe the
properties of a
result set.

22.4  Database Programming in Java   W951

getColumnDisplaySize method returns the column width, which is useful if you want to
print table rows and have the columns line up. Note that the indexes for these meth-
ods start with 1. For example,

for (int i = 1; i <= metaData.getColumnCount(); i++)
{
 String columnName = metaData.getColumnLabel(i);
 int columnSize = metaData.getColumnDisplaySize(i);
 . . .
}

ExecSQL.java is a useful sample program that puts these concepts to work. The pro-
gram reads a file containing SQL statements and executes them all. When a statement
has a result set, the result set is printed, using the result set metadata to determine the
column count and column labels.

For example, suppose you have the following file:

section_4/Product.sql

CREATE TABLE Product
 (Product_Code CHAR(7), Description VARCHAR(40), Price DECIMAL(10, 2))
INSERT INTO Product VALUES ('116-064', 'Toaster', 24.95)
INSERT INTO Product VALUES ('257-535', 'Hair dryer', 29.95)
INSERT INTO Product VALUES ('643-119', 'Car vacuum', 19.95)
SELECT * FROM Product

Run the Exec.SQL program as
java -classpath derby.jar;. ExecSQL database.properties Product.sql

The program executes the statements in the Product.sql file and prints out the result of
the SELECT query.

You can also use the Exec.SQL program as an interactive testing tool. Run
java -classpath derby.jar;. ExecSQL database.properties

Then type in SQL commands at the command line. Every time you press the Enter
key, the command is executed.

section_4/ExecSQL.java

1 import java.sql.Connection;
2 import java.sql.ResultSet;
3 import java.sql.ResultSetMetaData;
4 import java.sql.Statement;
5 import java.sql.SQLException;
6 import java.io.File;
7 import java.io.IOException;
8 import java.util.Scanner;
9

10 /**
11 Executes all SQL statements from a file or the console.
12 */
13 public class ExecSQL
14 {
15 public static void main(String[] args)
16 throws SQLException, IOException, ClassNotFoundException
17 {
18 if (args.length == 0)
19 {

W952  Chapter 22  Relational Databases

20 System.out.println(
21 "Usage: java -classpath driver_class_path"
22 + File.pathSeparator
23 + ". ExecSQL propertiesFile [SQLcommandFile]");
24 return;
25 }
26
27 SimpleDataSource.init(args[0]);
28
29 Scanner in;
30 if (args.length > 1)
31 {
32 in = new Scanner(new File(args[1]));
33 }
34 else
35 {
36 in = new Scanner(System.in);
37 }
38
39 Connection conn = SimpleDataSource.getConnection();
40 try
41 {
42 Statement stat = conn.createStatement();
43 while (in.hasNextLine())
44 {
45 String line = in.nextLine();
46 try
47 {
48 boolean hasResultSet = stat.execute(line);
49 if (hasResultSet)
50 {
51 ResultSet result = stat.getResultSet();
52 showResultSet(result);
53 result.close();
54 }
55 }
56 catch (SQLException ex)
57 {
58 System.out.println(ex);
59 }
60 }
61 }
62 finally
63 {
64 conn.close();
65 }
66 }
67
68 /**
69 Prints a result set.
70 @param result the result set
71 */
72 public static void showResultSet(ResultSet result)
73 throws SQLException
74 {
75 ResultSetMetaData metaData = result.getMetaData();
76 int columnCount = metaData.getColumnCount();
77
78 for (int i = 1; i <= columnCount; i++)
79 {

22.4  Database Programming in Java   W953

80 if (i > 1) { System.out.print(", "); }
81 System.out.print(metaData.getColumnLabel(i));
82 }
83 System.out.println();
84
85 while (result.next())
86 {
87 for (int i = 1; i <= columnCount; i++)
88 {
89 if (i > 1) { System.out.print(", "); }
90 System.out.print(result.getString(i));
91 }
92 System.out.println();
93 }
94 }
95 }

7.	 Suppose you want to test whether there are any customers in Hawaii. Issue the
statement
ResultSet result = stat.executeQuery("SELECT * FROM Customer WHERE State = 'HI'");

Which Boolean expression answers your question?
8.	 Suppose you want to know how many customers are in Hawaii. What is an

efficient way to get this answer?

Practice It	 Now you can try these exercises at the end of the chapter: R22.22, P22.3, P22.5.

Don’t Hardwire Database Connection Parameters into Your Program

It is considered inelegant to hardwire the database parameters into a program:

public class MyProg
{
 public static void main(String[] args)
 {
 // Don’t do this:
 String driver = "oracle.jdbc.driver.OracleDriver";
 String url = "jdbc:oracle:thin:@larry.mathcs.sjsu.edu:1521:InvoiceDB";
 String username = "admin";
 String password = "secret";
 . . .
 }
}

If you want to change to a different database, you must locate these strings, update them, and
recompile.

Instead, place the strings into a separate configuration file (such as database.properties in
our sample program). The SimpleDataSource.java file reads in the configuration file with the
database connection parameters. To connect to a different database, you simply supply a dif-
ferent configuration file name on the command line.

S e l f C h e c k

Programming Tip 22.4

W954  Chapter 22  Relational Databases

Let the Database Do the Work

You now know how to issue a SQL query from a Java program and iterate through the result
set. A common error that students make is to iterate through one table at a time to find a result.
For example, suppose you want to find all invoices that contain car vacuums. You could use
the following plan:

1.	 Issue the query SELECT * FROM Product and iterate through the result set to find the
product code for a car vacuum.

2.	 Issue the query SELECT * FROM LineItem and iterate through the result set to find the line
items with that product code.

However, that plan is extremely inefficient. Such a program does in very slow motion what a
database has been designed to do quickly.

Instead, you should let the database do all the work. Give the complete query to the data-
base:

SELECT LineItem.Invoice_Number
 FROM Product, LineItem
 WHERE Product.Description = ‘Car vacuum’
 AND Product.Product_Code = LineItem.Product_Code

Then iterate through the result set to read all invoice numbers.
Beginners are often afraid of issuing complex SQL queries. However, you are throwing

away a major benefit of a relational database if you don’t take advantage of SQL.

Constructing Queries from Arbitrary Strings

Suppose you need to issue the following query with different names.

SELECT * FROM Customer WHERE Name = customerName

Many students try to construct a SELECT statement manually, like this:

String customerName = . . . ;
String query = "SELECT * FROM Customer WHERE Name = '" + customerName + "'";
ResultSet result = stat.executeQuery(query);

However, this code will fail if the name contains single quotes, such as "Sam's Small Appli-
ances". The query string has a syntax error: a mismatched quote. More serious failures can be
introduced by hackers who deliberately enter names or addresses with SQL control charac-
ters, changing the meanings of queries. These “SQL injection attacks” have been responsible
for many cases of data theft. Never add a string to a query that you didn’t type yourself.

The remedy is to use a PreparedStatement instead:

String query = "SELECT * FROM Customer WHERE Name = ?";
PreparedStatement stat = conn.prepareStatement(query);
stat.setString(1, aName);
ResultSet result = stat.executeQuery(query);

The setString method of the PreparedStatement class will properly handle quotes and other
special characters in the string.

Programming Tip 22.5

Common Error 22.2

22.5 A pplication: Entering an Invoice   W955

22.5  Application: Entering an Invoice
In this section, we develop a program for entering an invoice into the database shown
in Figure 8. Here is a sample program run:

Name: Robert Lee
Street address: 833 Lyon Street
City: San Francisco
State: CA
Zip: 94155
Product code (D=Done, L=List): L
116-064 Toaster
257-535 Hair dryer
643-119 Car vacuum
Product code (D=Done, L=List): 116-064
Quantity: 2
Product code (D=Done, L=List): 257-535
Quantity: 3
Product code (D=Done, L=List): D
Robert Lee
833 Lyon Street
San Francisco, CA 94155
2 x 116-064 Toaster
3 x 257-535 Hair dryer

This program puts the concepts of the preceding sections to work.
Before running the program, we assume that the Customer, Product, Invoice, and

LineItem tables have been created. To do so, you can run the ExecSQL program of Sec-
tion 22.4 with the following files (provided with the book’s companion code):

Customer.sql

Product.sql

Invoice.sql

LineItem.sql

As in the previous programs, we use our SimpleDataSource helper class to get a database
connection. Then we call newCustomer so it can prompt for the customer information.

SimpleDataSource.init(args[0]);
Connection conn = SimpleDataSource.getConnection();
Scanner in = new Scanner(System.in);

try
{
 int customerNumber = newCustomer(conn, in);
 . . .
}
finally
{
 conn.close();
}

The newCustomer method prompts for the new customer information and adds it to the
database. The nextLine method is a convenience method for prompting the user and
reading a string from a Scanner—see the code at the end of this section.

private static int newCustomer(Connection conn, Scanner in)
 throws SQLException
{

W956  Chapter 22  Relational Databases

 String name = nextLine(in, "Name");
 String address = nextLine(in, "Street address");
 String city = nextLine(in, "City");
 String state = nextLine(in, "State");
 String zip = nextLine(in, "Zip");
 int id = . . .;
 PreparedStatement stat = conn.prepareStatement(
 "INSERT INTO Customer VALUES (?, ?, ?, ?, ?, ?)");
 stat.setInt(1, id);
 stat.setString(2, name);
 stat.setString(3, address);
 stat.setString(4, city);
 stat.setString(5, state);
 stat.setString(6, zip);
 stat.executeUpdate();
 stat.close();
 return id;
}

The method gathers the new customer data and issues an INSERT INTO statement to
store them in the database.

But how do we provide the ID? We don’t want to ask the program user to come up
with IDs. They should be automatically assigned. We will query the largest ID that
has been used so far, and use the next larger value as the new ID:

Statement stat = conn.createStatement();
ResultSet result = stat.executeQuery(
 "SELECT max(Customer_Number) FROM Customer");
result.next();
int id = result.getInt(1) + 1;

There is just one potential problem. If two users access the database simultane-
ously, it is possible that both of them create a customer with the same ID at the same
time. The remedy is to place the code for adding a customer inside a transaction—
see Special Topic 22.2 on page W962. This is an important requirement in a database with
simultaneous users. However, we will skip this step to keep the program simple.

Later, we also need to generate new IDs for invoices. We provide a method getNewId
that works for both tables.

This completes the customer portion of the invoice entry. We now add a row for
the invoice, calling the getNewId method to get a new invoice number.

int id = getNewId(conn, "Invoice");
PreparedStatement stat = conn.prepareStatement(
 "INSERT INTO Invoice VALUES (?, ?, 0)");
stat.setInt(1, id);
stat.setInt(2, customerNumber);
stat.executeUpdate();

Next, the user needs to enter the product codes. When a user provides a code, we
will check that it is valid. That is a very simple SELECT query. We don’t even look at the
result set—if it has a row, we have found the product.

PreparedStatement stat = conn.prepareStatement(
 "SELECT * FROM Product WHERE Product_Code = ?");
stat.setString(1, code);
ResultSet result = stat.executeQuery();
boolean found = result.next();

You will find this code in the findProduct method.

22.5 A pplication: Entering an Invoice   W957

When the user chooses to see a list of products, we issue a simple query and list the
result, as shown here:

Statement stat = conn.createStatement();
ResultSet result = stat.executeQuery(
 "SELECT Product_Code, Description FROM Product");
while (result.next())
{
 String code = result.getString(1);
 String description = result.getString(2);
 System.out.println(code + " " + description);
}

Whenever the user has supplied a product code and a quantity, we add another row
to the LineItem table. That is yet another INSERT INTO statement—you will find it in the
addLineItem method below.

The following loop keeps asking for product codes and quantities:

boolean done = false;
while (!done)
{
 String productCode = nextLine(in, "Product code (D=Done, L=List)");
 if (productCode.equals("D")) { done = true; }
 else if (productCode.equals("L")) { listProducts(conn); }
 else if (findProduct(conn, productCode))
 {
 int quantity = nextInt(in, "Quantity");
 addLineItem(conn, id, productCode, quantity);
 }
 else { System.out.println("Invalid product code."); }
}
showInvoice(conn, id);

When the loop ends, we print the invoice. Here, the queries are more interesting. The
showInvoice method has the invoice ID as a parameter. It needs to find the matching
customer data by joining the Invoice and Customer tables:

PreparedStatement stat = conn.prepareStatement(
 "SELECT Customer.Name, Customer.Address, "
 + "Customer.City, Customer.State, Customer.Zip "
 + "FROM Customer, Invoice "
 + "WHERE Customer.Customer_Number = Invoice.Customer_Number "
 + "AND Invoice.Invoice_Number = ?");
stat.setInt(1, id);

The query result contains the customer information which we print. Then we need
to get all line items and the product descriptions, again linking two tables in a query:

stat = conn.prepareStatement(
 "SELECT Product.Product_Code, Product.Description, LineItem.Quantity "
 + "FROM Product, LineItem "
 + "WHERE Product.Product_Code = LineItem.Product_Code "
 + "AND LineItem.Invoice_Number = ?");
stat.setInt(1, id);

Our program simply prints the data in a simple form, as you saw at the beginning of
this section; Exercise P22.5 asks you to format it better.

Following is the complete invoice entry program.

W958  Chapter 22  Relational Databases

section_5/InvoiceEntry.java

1 import java.sql.Connection;
2 import java.sql.PreparedStatement;
3 import java.sql.ResultSet;
4 import java.sql.SQLException;
5 import java.sql.Statement;
6 import java.io.IOException;
7 import java.io.File;
8 import java.util.Scanner;
9

10 /**
11 Enters an invoice into the database.
12 Be sure to add Customer.sql, Product.sql, Invoice.sql, and LineItem.sql
13 to the database before running this program.
14 */
15 public class InvoiceEntry
16 {
17 public static void main(String args[])
18 {
19 if (args.length == 0)
20 {
21 System.out.println(
22 "Usage: java -classpath driver_class_path"
23 + File.pathSeparator
24 + ". InvoiceEntry propertiesFile");
25 return;
26 }
27
28 try
29 {
30 SimpleDataSource.init(args[0]);
31 Connection conn = SimpleDataSource.getConnection();
32 Scanner in = new Scanner(System.in);
33
34 addInvoice(in, conn);
35 }
36 catch (SQLException ex)
37 {
38 System.out.println("Database error");
39 ex.printStackTrace();
40 }
41 catch (ClassNotFoundException ex)
42 {
43 System.out.println("Error loading database driver");
44 ex.printStackTrace();
45 }
46 catch (IOException ex)
47 {
48 System.out.println("Error loading database properties");
49 ex.printStackTrace();
50 }
51 }
52
53 public static void addInvoice(Scanner in, Connection conn)
54 throws SQLException
55 {
56 try
57 {

22.5 A pplication: Entering an Invoice   W959

58 int customerNumber = newCustomer(conn, in);
59
60 int id = getNewId(conn, "Invoice");
61 PreparedStatement stat = conn.prepareStatement(
62 "INSERT INTO Invoice VALUES (?, ?, 0)");
63 stat.setInt(1, id);
64 stat.setInt(2, customerNumber);
65 stat.executeUpdate();
66 stat.close();
67
68 boolean done = false;
69 while (!done)
70 {
71 String productCode = nextLine(in, "Product code (D=Done, L=List)");
72 if (productCode.equals("D")) { done = true; }
73 else if (productCode.equals("L")) { listProducts(conn); }
74 else if (findProduct(conn, productCode))
75 {
76 int quantity = nextInt(in, "Quantity");
77 addLineItem(conn, id, productCode, quantity);
78 }
79 else { System.out.println("Invalid product code."); }
80 }
81 showInvoice(conn, id);
82 }
83 finally
84 {
85 conn.close();
86 }
87 }
88
89 /**
90 Prompts the user for the customer information and creates a new customer.
91 @param conn the database connection
92 @param in the scanner
93 @return the ID of the new customer
94 */
95 private static int newCustomer(Connection conn, Scanner in)
96 throws SQLException
97 {
98 String name = nextLine(in, "Name");
99 String address = nextLine(in, "Street address");

100 String city = nextLine(in, "City");
101 String state = nextLine(in, "State");
102 String zip = nextLine(in, "Zip");
103 int id = getNewId(conn, "Customer");
104 PreparedStatement stat = conn.prepareStatement(
105 "INSERT INTO Customer VALUES (?, ?, ?, ?, ?, ?)");
106 stat.setInt(1, id);
107 stat.setString(2, name);
108 stat.setString(3, address);
109 stat.setString(4, city);
110 stat.setString(5, state);
111 stat.setString(6, zip);
112 stat.executeUpdate();
113 stat.close();
114 return id;
115 }
116

W960  Chapter 22  Relational Databases

117 /**
118 Finds a product in the database.
119 @param conn the database connection
120 @param code the product code to search
121 @return true if there is a product with the given code
122 */
123 private static boolean findProduct(Connection conn, String code)
124 throws SQLException
125 {
126 PreparedStatement stat = conn.prepareStatement(
127 "SELECT * FROM Product WHERE Product_Code = ?");
128 stat.setString(1, code);
129 ResultSet result = stat.executeQuery();
130 boolean found = result.next();
131 stat.close();
132 return found;
133 }
134
135 /**
136 Adds a line item to the database.
137 @param conn the database connection
138 @param id the invoice ID
139 @param code the product code
140 @param quantity the quantity to order
141 */
142 private static void addLineItem(Connection conn, int id,
143 String code, int quantity) throws SQLException
144 {
145 PreparedStatement stat = conn.prepareStatement(
146 "INSERT INTO LineItem VALUES (?, ?, ?)");
147 stat.setInt(1, id);
148 stat.setString(2, code);
149 stat.setInt(3, quantity);
150 stat.executeUpdate();
151 stat.close();
152 }
153
154 /**
155 Lists all products in the database.
156 @param conn the database connection
157 */
158 private static void listProducts(Connection conn)
159 throws SQLException
160 {
161 Statement stat = conn.createStatement();
162 ResultSet result = stat.executeQuery(
163 "SELECT Product_Code, Description FROM Product");
164 while (result.next())
165 {
166 String code = result.getString(1);
167 String description = result.getString(2);
168 System.out.println(code + " " + description);
169 }
170 stat.close();
171 }
172
173 /**
174 Gets a new ID for a table. This method should be called from
175 inside a transaction that also creates the new row with this ID.
176 The ID field should have name table_Number and type INTEGER.

22.5 A pplication: Entering an Invoice   W961

177 @param table the table name
178 @return a new ID that has not yet been used.
179 */
180 private static int getNewId(Connection conn, String table)
181 throws SQLException
182 {
183 Statement stat = conn.createStatement();
184 ResultSet result = stat.executeQuery(
185 "SELECT max(" + table + "_Number) FROM " + table);
186 result.next();
187 int max = result.getInt(1);
188 stat.close();
189 return max + 1;
190 }
191
192 /**
193 Shows an invoice.
194 @param conn the database connection
195 @param id the invoice ID
196 */
197 private static void showInvoice(Connection conn, int id)
198 throws SQLException
199 {
200 PreparedStatement stat = conn.prepareStatement(
201 "SELECT Customer.Name, Customer.Address, "
202 + "Customer.City, Customer.State, Customer.Zip "
203 + "FROM Customer, Invoice "
204 + "WHERE Customer.Customer_Number = Invoice.Customer_Number "
205 + "AND Invoice.Invoice_Number = ?");
206 stat.setInt(1, id);
207 ResultSet result = stat.executeQuery();
208 result.next();
209 System.out.println(result.getString(1));
210 System.out.println(result.getString(2));
211 System.out.println(result.getString(3).trim() + ", "
212 + result.getString(4) + " " + result.getString(5));
213 stat.close();
214
215 stat = conn.prepareStatement(
216 "SELECT Product.Product_Code, Product.Description, LineItem.Quantity "
217 + "FROM Product, LineItem "
218 + "WHERE Product.Product_Code = LineItem.Product_Code "
219 + "AND LineItem.Invoice_Number = ?");
220 stat.setInt(1, id);
221
222 result = stat.executeQuery();
223 while (result.next())
224 {
225 String code = result.getString(1);
226 String description = result.getString(2).trim();
227 int qty = result.getInt(3);
228
229 System.out.println(qty + " x " + code + " " + description);
230 }
231 stat.close();
232 }
233
234 /**
235 Prompts the user and reads a line from a scanner.
236 @param in the scanner

W962  Chapter 22  Relational Databases

237 @param prompt the prompt
238 @return the string that the user entered
239 */
240 private static String nextLine(Scanner in, String prompt)
241 {
242 System.out.print(prompt + ": ");
243 return in.nextLine();
244 }
245
246 /**
247 Prompts the user and reads an integer from a scanner.
248 @param in the scanner
249 @param prompt the prompt
250 @return the integer that the user entered
251 */
252 private static int nextInt(Scanner in, String prompt)
253 {
254 System.out.print(prompt + ": ");
255 int result = in.nextInt();
256 in.nextLine(); // Consume newline
257 return result;
258 }
259 }

This example completes this introduction to Java database programming. You have
seen how you can use SQL to query and update data in a database and how the JDBC
library makes it easy for you to issue SQL commands in a Java program.

9.	 Why do the InvoiceEntry methods throw a SQLException instead of catching it?
10.	 How could one simplify the first query of the showInvoice method?
11.	 This program assumes that the customer does not pay at the time of order entry.

How can the program be modified to handle payment?
12.	 This program does not display the amount due. How could we display it?

Practice It	 Now you can try these exercises at the end of the chapter: P22.7, P22.8.

Transactions

An important part of database processing is transaction handling. A transaction is a set of
database updates that should either succeed in its entirety or not happen at all. For example,
consider a banking application that transfers money from one account to another. This opera-
tion involves two steps: reducing the balance of one account and increasing the balance of
another account. No software system is perfect, and there is always the possibility of an error.
The banking application, the database program, or the network connection between them
could exhibit an error right after the first part—then the money would be withdrawn from the
first account but never deposited to the second account. Clearly, this would be very bad. There
are many other similar situations. For example, if you change an airline reservation, you don’t
want to give up your old seat until the new one is confirmed.

What all these situations have in common is that there is a set of database operations that are
grouped together to carry out the transaction. All operations in the group must be carried out
together—a partial completion cannot be tolerated. In SQL, you use the COMMIT and ROLLBACK
commands to manage transactions.

S e l f C h e c k

Special Topic 22.2

22.5 A pplication: Entering an Invoice   W963

For example, to transfer money from one account to another, you issue the commands

UPDATE Account SET Balance = Balance - 1000
 WHERE Account_Number = '95667-2574'
UPDATE Account SET Balance = Balance + 1000
 WHERE Account_Number = '82041-1196'
COMMIT

The COMMIT command makes the updates permanent. Conversely, the ROLLBACK command
undoes all changes up to the last COMMIT.

When you program with JDBC, by default the JDBC library automatically commits all
database updates. That is convenient for simple programs, but it is not what you want for
transaction processing. Thus, you should first turn the autocommit mode off:

Connection conn = . . .;
conn.setAutoCommit(false);
Statement stat = conn.createStatement();

Then issue the updates that form the transaction and call the commit method of the Statement
class:

stat.executeUpdate(
 "UPDATE Account SET Balance = Balance - "
 + amount + " WHERE Account_Number = " + fromAccount);
stat.executeUpdate(
 "UPDATE Account SET Balance = Balance + "
 + amount + " WHERE Account_Number = " + toAccount);
conn.commit();

Conversely, if you encounter an error, then call the rollback method. This typically happens in
an exception handler:

try
{
 . . .
}
catch (Exception ex)
{
 conn.rollback();
}

You may wonder how a database can undo updates when a transaction is rolled back. The
database actually stores your changes in a set of temporary tables. If you make queries within a
transaction, the information in the temporary tables is merged with the permanent data for the
purpose of computing the query result, giving you the illusion that the updates have already
taken place. When you commit the transaction, the temporary data are made permanent.
When you execute a rollback, the temporary tables are simply discarded.

Object-Relational Mapping

Database tables store rows that contain strings, numbers, and other fundamental data types,
but not arbitrary objects. In Sections 22.1.2 and 22.1.3, you learned how to translate object ref-
erences into database relationships. An object-relational mapper automates this process. The
Java Enterprise Edition contains such a mapper. You add annotations to the Java classes that
describe the relationships. The rules are simple:
•	 Add @Entity to every class that should be stored in the database.
•	 Each entity class needs an ID that is annotated with @Id.
•	 Relationships between classes are expressed with @OneToOne, @OneToMany, @ManyToOne, and

@ManyToMany.

Special Topic 22.3

W964  Chapter 22  Relational Databases

Here are the annotations for the invoice classes. A customer can have many invoices, but each
invoice has exactly one customer. This is expressed by the @ManyToOne annotation. Conversely,
each line item is contained in exactly one invoice, but each invoice can have many line items.
This is expressed by the @OneToMany relationship.

@Entity public class Invoice
{
 @Id private int id;
 @ManyToOne private Customer theCustomer;
 @OneToMany private List<LineItem> items;
 private double payment;
 . . .
}

@Entity public class LineItem
{
 @Id private int id;
 @ManyToOne private Product theProduct;
 private int quantity
 . . .
}

@Entity public class Product
{
 @Id private int id;
 private String description;
 private double price;
 . . .
}

@Entity public class Customer
{
 @Id private int id;
 private String name;
 private String address;
 private String city;
 private String state;
 private String zip;
 . . .
}

The object-relational mapper processes the annotations and produces a database table layout.
You don’t have to worry exactly how the data are stored in the database. For example, to store
a new invoice, simply build up the Java object and call

entityManager.persist(invoice);

As a result of this call, the data for the invoice and line items are automatically stored in the
various database tables.

To read data from the database, you do not use SQL—after all, you do not know the exact
table layout. Instead, you formulate a query in an object-oriented query language. A typical
query looks like this:

SELECT x FROM Invoice x WHERE x.id = 11731

The result is a Java object of type Invoice. The references to the customer and line item objects
have been automatically populated with the proper data from various tables.

Object-relational mapping technology is powerful and convenient. However, you still
need to understand the underlying principles of relational databases in order to specify effi-
cient mappings and queries.

  Available online in WileyPLUS and at www.wiley.com/college/horstmann.

Chapter Summary  W965

Develop strategies for storing data in a database.

•	 A relational database stores information in tables. Each table column has a name
and a data type.

•	 SQL (Structured Query Language) is a command language for interacting with
a database.

•	 Use the SQL commands CREATE TABLE and INSERT INTO to add data to a database.
•	 You should avoid rows with replicated data. Instead, distribute the data over

multiple tables.
•	 A primary key is a column (or set of columns) whose value uniquely specifies a

table record.
•	 A foreign key is a reference to a primary key in a linked table.
•	 Implement one-to-many relationships with linked tables, not replicated columns.

Use SQL to query and update a database.

•	 Use the SQL SELECT command to query a database.
•	 The WHERE clause selects data that fulfill a condition.
•	 A join is a query that involves multiple tables.
•	 The UPDATE and DELETE SQL commands modify the data in a database.

Install a database system and test that you can connect to it from a Java program.

•	 You need a JDBC (Java Database Connectivity) driver to access a database from a
Java program.

•	 Make sure the JDBC driver is on the class path when you launch the Java program.
•	 To connect to the database, you need to specify a database URL, user name, and

password.

Write Java programs that access and update database records.

•	 Use a Connection object to access a database from a Java program.
•	 A Connection object can create Statement objects that are used to execute

SQL commands.
•	 The result of a SQL query is returned in a ResultSet object.
•	 Metadata are data about an object. Result set metadata describe the properties of a

result set.

Develop programs that use the JDBC library for accessing a database.

Worked Example 22.1	 Programming a Bank Database

In this Worked Example, we will develop a complete database program by reimplementing the
ATM simulation of Chapter 12 so that the customer and account data are stored in a database.

C h a p t e r Summ a r y

W966  Chapter 22  Relational Databases

• R22.1	 Design a set of database tables to store people and cars. A person has a name, a
unique driver license number, and an address. Every car has a unique vehicle identi
fication number, manufacturer, type, and year. Every car has one owner, but one
person can own multiple cars.

• R22.2	 Design a set of database tables to store library books and patrons. A book has an
ISBN (International Standard Book Number), an author, and a title. The library
may have multiple copies of each book, each with a different book ID. A patron has
a name, a unique ID, and an address. A book may be checked out by at most one
patron, but one patron can check out multiple books.

• R22.3	 Design a set of database tables to store sets of coins in purses. Each purse has an
owner name and a unique ID. Each coin type has a unique name and a value. Each
purse contains some quantity of coins of a given type.

• R22.4	 Design a set of database tables to store students, classes, professors, and classrooms.
Each student takes zero or more classes. Each class has one professor, but a professor
can teach multiple classes. Each class has one classroom.

• R22.5	 Give SQL commands to create a Book table, with columns for the ISBN, author, and
title, and to insert all textbooks that you are using this semester.

• R22.6	 Give SQL commands to create a Car table, with columns for the vehicle identifica
tion number, manufacturer, model, and year of each car, and to insert all cars that
your family members own.

Exercises R22.7–R22.17 refer to the invoice database of Section 22.2.

• R22.7	 Give a SQL query that lists all products in the invoice database of Section 22.2.

• R22.8	 Give a SQL query that lists all customers in California.

• R22.9	 Give a SQL query that lists all customers in California or Nevada.

S ta n d a r d L i b r a r y i t e m s i n t r o duc e d i n t h i s c h a p t e r

java.io.File
 pathSeparator
java.lang.Class
 forName
java.sql.Connection
 close
 commit
 createStatement
 prepareStatement
 rollback
 setAutoCommit
java.sql.DriverManager
 getConnection

java.sql.PreparedStatement
 execute
 executeQuery
 executeUpdate
 setDouble
 setInt
 setString
java.sql.ResultSet
 close
 getDouble
 getInt
 getMetaData
 getString
 next

java.sql.ResultSetMetaData
 getColumnCount
 getColumnDisplaySize
 getColumnLabel
java.sql.SQLException
java.sql.Statement
 close
 execute
 executeQuery
 executeUpdate
 getResultSet
 getUpdateCount
java.util.Properties
 getProperty
 load

R e v i e w E x e r c i s e s

Review Exercises  W967

• R22.10	 Give a SQL query that lists all customers not in Hawaii.

•• R22.11	 Give a SQL query that lists all customers who have an unpaid invoice.

•• R22.12	 Give a SQL query that lists all products that have been purchased by a customer in
California.

•• R22.13	 Give a SQL query that lists all line items that are part of invoice number 11731.

•• R22.14	 Give a SQL query that computes the sum of all quantities that are part of invoice
number 11731.

••• R22.15	 Give a SQL query that computes the total cost of all line items in invoice number
11731.

•• R22.16	 Give a SQL update statement that raises all prices by ten percent.

•• R22.17	 Give a SQL statement that deletes all customers in California.

•• R22.18	 Pick a database system (such as DB2, Oracle, Postgres, or SQL Server) and deter
mine from the web documentation:

•	 What JDBC driver do you need? Is it automatically discovered?
•	 What is the database URL?

• R22.19	 Where is the file derby.jar located in your installation of the Java development kit?

•• R22.20	 Suppose you run the command java -classpath derby.jar;. TestDB database.properties,
as described in Section 22.3. Match the following five error messages to the error
conditions they correspond to.

Error Message Error Condition

Usage: java [-options] class [args...]
The suffix ; create=true was missing from
the jdbc.url entry in database.properties.

Exception in thread “main” java.sql.
SQLException: No suitable driver found for
jdbc:derby:BigJavaDB;create=true

The database.properties file was not
present in the current directory.

Exception in thread “main” java.lang.
NoClassDefFoundError: TestDB

derby.jar and . should have been separated
by a colon on this operating system.

Exception in thread “main” java.io.
FileNotFoundException: database.properties

The TestDB.class file was not present in
the current directory.

Exception in thread “main” java.sql.
SQLException: Database 'BigJavaDB' not found.

The derby.jar file was not present in the
current directory.

• R22.21	 What is the difference between a Connection and a Statement?

• R22.22	 Of the SQL commands introduced in this chapter, which yield result sets, which
yield an update count, and which yield neither?

• R22.23	 How is a ResultSet different from an Iterator?

W968  Chapter 22  Relational Databases

• P22.1	 Write a Java program that creates a Coin table with coin names and values; inserts
coin types penny, nickel, dime, quarter, half dollar, and dollar; and prints out the sum
of the coin values. Use SQL commands CREATE TABLE, INSERT, and SELECT SUM.

• P22.2	 Write a Java program that creates a Car table with car manufacturers, models, model
years, and fuel efficiency ratings. Insert several cars. Print out the average fuel effi
ciency. Use SQL commands CREATE TABLE, INSERT, and SELECT AVG.

•• P22.3	 Improve the ExecSQL program and make the columns of the output line up. Hint: Use
the getColumnDisplaySize method of the ResultSetMetaData class.

•• P22.4	 Modify the program in Section 22.5 so that the user has the choice of selecting an
existing customer. Provide an option to search for the customer by name or zip code.

•• P22.5	 Write a Java program that uses the database tables from the invoice database in
Section 22.2. Prompt the user for an invoice number and print out the invoice,
formatted as in Chapter 12.

•• P22.6	 Write a Java program that uses the database tables from the invoice database in
Section 22.2. Produce a report that lists all customers, their invoices, the amounts
paid, and the unpaid balances.

•• P22.7	 Write a Java program that uses a library database of books and patron data, as
described in Exercise R22.2. Patrons should be able to check out and return books.
Supply commands to print the books that a patron has checked out and to find who
has checked out a particular book. Create and populate Patron and Book tables
before running the program.

•• P22.8	 Write a Java program that creates a grade book for a class. Create and populate Stu
dent and Grade tables before running the program. The program should be able to
display all grades for a given student. It should allow the instructor to add a new
grade (such as “Homework 4: 100”) or modify an existing grade.

••• P22.9	 Write a program that assigns seats on an airplane as described in Exercise P12.18.
Keep the seating information in a database.

••• P22.10	 Write a program that keeps an appointment calendar in a database. An appointment
includes a description, a date, the starting time, and the ending time; for example,

Dentist 2012/10/1 17:30 18:30
CS1 class 2012/10/2 08:30 10:00

Supply a user interface to add appointments, remove canceled appointments, and
print out a list of appointments for a particular day.

• P22.11	 Modify the ATM simulation program of Worked Example 22.1 so that the program
pops up two ATM frames. Verify that the database can be accessed simultaneously
by two users.

•• P22.12	 Write a program that uses a database of quizzes. Each quiz has a description and one
or more multiple-choice questions. Each question has one or more choices, one of
which is the correct one. Use tables Quiz, Question, and Choice. The program should
show the descriptions of all quizzes, allow the user to choose one, and present all

P r o g r a mm i n g E x e r c i s e s

Answers to Self-Check Questions  W969

questions in the chosen quiz. When the user has provided responses to all questions,
show the score.

••• P22.13	 Enhance the program of Exercise P22.12 so that it stores the user’s responses in the
database. Add Student and Response tables. (User is a reserved word in SQL.)

•• P22.14	 Write a program that uses the database of Exercise P22.13 and prints a report show-
ing how all students performed on all quizzes.

A n s w e r s t o S e l f - C h e ck Q u e s t i o n s

1.	 The telephone number for each customer
may not be unique—the same number might
be shared by roommates. Even if the number
were unique, however, it can change when a
customer moves. In that situation, both the
primary and all foreign keys would need to be
updated. Therefore, a customer ID is a better
choice.

2.	 Customer 3176 ordered ten toasters.
3.	 SELECT Name

 FROM Customer
 WHERE State <> 'AK' AND State <> 'HI'

4.	 SELECT Invoice.Invoice_Number
 FROM Invoice, Customer
 WHERE Invoice.Customer_Number
 = Customer.Customer_Number
 AND Customer.State = 'HI'

5.	 Connect to the database with a program that
lets you execute SQL instructions. Try creat-
ing a small database table, adding a record, and
selecting all records. Then drop the table again.

6.	 You didn’t set the class path correctly. The
JAR file containing the JDBC driver must be
on the class path.

7.	 result.next(). If there is at least one result, then
next returns true.

8.	 ResultSet result = stat.executeQuery(
 "SELECT COUNT(*) FROM Customer
 WHERE State = 'HI'");
result.next();
int count = result.getInt(1);

Note that the following alternative is sig-
nificantly slower if there are many such
customers.
ResultSet result = stat.executeQuery(
 "SELECT * FROM Customer
 WHERE State = 'HI'");
while (result.next()) { count++; } // Inefficient

9.	 In this program, error reporting is the respon-
sibility of the main method.

10.	 By passing the customer number as an argu-
ment. Then the query would only involve the
customer table.

11.	 The most convenient approach is to ask the
user about the payment before entering the
items. Then the payment can be added to the
statement in the addInvoice method.

12.	 We can either compute it in the loop that dis-
plays the line items, or we can issue a query
SELECT SUM(Product.Price * LineItem.Quantity)
 FROM Product, LineItem
 WHERE Product.Product_Code
 = LineItem.Product_Code
 AND LineItem.Invoice_Number = ?

