
Support Vector Machine Concept-Dependent

Active Learning for Image Retrieval

Edward Y. Chang

VIMA Technologies

120 Cremona Drive

Santa Barbara, CA 93117

echang@vimatech.com

Simon Tong

Department of Computer Science

Stanford University

Sanford, CA 94305

simon.tong@cs.stanford.edu

Kingshy Goh

VIMA Technologies

120 Cremona Drive

Santa Barbara, CA 93117

kingshy@engineering.ucsb.edu

Cheng-Wei Chang

VIMA Technologies

120 Cremona Drive

Santa Barbara, CA 93117

bchang@vimatech.com

Abstract

Relevance feedback is a critical component when designing image databases. With these databases
it is difficult to specify queries directly and explicitly. Relevance feedback interactively learns a
user’s desired output or query concept by asking the user whether certain proposed images are
relevant or not. For a learning algorithm to be effective, it must learn a user’s query concept
accurately and quickly, while also asking the user to label only a small number of images. In
addition, the concept-learning algorithm should consider the complexity a concept in determining
its learning strategies. In this paper, we present the use of support vector machines active learning
in a concept-dependent way (SVM

CD
Active) for conducting relevance feedback. We characterize a

concept’s complexity using three measures: hit-rate, isolation and diversity. To reduce concept
complexity so as to improve concept learnability, we propose a multimodal learning approach that
uses images’ semantic labels to intelligently adjust the sampling strategy and the sampling pool
of SVM

CD
Active . Our empirical study on several datasets shows that active learning outperforms

traditional passive learning, and concept-dependent learning is superior to the traditional concept-
independent relevance-feedback schemes.

Keywords: active learning, image retrieval, query concept, relevance feedback, support vector ma-
chines.

1 Introduction

One key design task, when constructing image databases, is the creation of an effective relevance

feedback component. While it is sometimes possible to arrange images within an image database

by creating a hierarchy, or by hand-labeling each image with descriptive words, these methods are

time-consuming, costly, and subjective. Alternatively, requiring an end-user to specify an image query

in terms of low-level features (such as color and spatial relationships) is challenging to the end-user,

because an image query is hard to articulate, and articulation can vary from one user to another.

1

Thus, we need a way for a user to implicitly inform a database of his or her desired output or query

concept. To address this requirement, relevance feedback can be used as a query refinement scheme

to derive or learn a user’s query concept. To solicit feedback, the refinement scheme displays a few

image instances and the user labels each image as “relevant” or “not relevant.” Based on the responses,

another set of images from the database is presented to the user for labeling. After a few such querying

rounds, the refinement scheme returns a number of instances from the database that seem to fit the

needs of the user.

The construction of such a query refinement scheme (hereafter called a query-concept learner or

learner) can be regarded as a machine learning task. In particular, it can be seen as a case of pool-based

active learning [35, 39]. In pool-based active learning the learner has access to a pool of unlabeled data

and can request the user’s label for a certain number of instances in the pool. In the image retrieval

domain, the unlabeled pool would be the entire database of images. An instance would be an image,

and the two possible labelings for each image would be “relevant” or “not relevant.” The goal for the

learner is to learn the user’s query concept — in other words, to label each image within the database

in such a manner that the learner’s labeling and the user’s labeling will agree.

The main issue with active learning is finding a method for choosing informative images within the

pool to ask the user to label. We call such a request for the label of an image a pool-query. Most

machine learning algorithms are passive in the sense that they are generally applied using a randomly

selected training set. The key idea with active learning is that it should choose its next pool-query

based upon the past answers to previous pool-queries.

In general, and for the image retrieval task in particular, such a learner must meet two critical

design goals. First, the learner must learn target concepts accurately. Second, the learner must grasp

a concept quickly, with only a small number of labeled instances, since most users do not wait around

to provide a great deal of feedback. In this study, we propose using a support vector machine active

learner (SVM
CD
Active) to achieve these goals. SVM

CD
Active combines active learning with support vector

machines (SVMs). SVMs [6, 60] have met with significant success in numerous real-world learning

tasks. However, like most machine learning algorithms, SVMs use a randomly selected training set,

which is not very useful in the relevance feedback setting. Recently, general purpose methods for active

learning with SVMs have been independently developed by a number of researchers [7, 53, 59]. In the

first part of this paper, we use the theoretical motivation of [59] on active learning with SVMs to extend

the use of support vector machines to the task of relevance feedback for image databases.

When conducting a pool-query, SVMCD
Active should consider the complexity of the target concept to

adjust its sampling strategies for choosing informative images within the pool to ask user to label. In

the second part of this paper, we characterize concept complexity using three parameters: scarcity,

isolation and diversity. Each of these parameters affects the learnability of a concept in a different

way. The hit-rate (scarcity) is the percentage of instances matching the target concept in a database.

When the hit-rate is low, it is difficult for active learning to find enough relevant instances to match

2

the query. When isolation of a concept is poor, or several concepts are not well isolated from one

another in the input space1, the learner might confuse the target concept with its neighbors. Finally,

when a concept’s diversity is high, the algorithm needs to be more explorative, rather than narrowly

focused, so as to find the relevant instances that are scattered in the input space. We investigate how

these complexity factors affect concept learnability, and then propose a multimodal learning approach

that uses semantic labels (keywords) of images to guide our concept-dependent active-learning process.

We adjust the sample pool and sampling strategy according to concept complexity: SVMCD
Active carefully

selects the sample pool to improve hit-rate and isolation of the query concept, and it enhances the

concept’s learnability by adapting its sampling strategy to the concept’s diversity.

Intuitively, SVMCD
Active works by combining the following four ideas:

1. SVMCD
Active regards the task of learning a target concept as one of learning an SVM binary classifier.

An SVM captures the query concept by separating the relevant images from irrelevant ones with

a hyperplane in a projected space, usually a very high-dimensional one. The projected points on

one side of the hyperplane are considered relevant to the query concept and the rest irrelevant.

2. SVMCD
Active learns the classifier quickly via active learning. The active part of SVMCD

Active selects

the most informative instances with which to train the SVM classifier. This step ensures fast

convergence to the query concept in a small number of feedback rounds.

3. SVMCD
Active learns the classifier in a concept-dependent way. With multimodal information from

keywords and images’ perceptual features, SVM
CD
Active improves concept learnability for effectively

capturing the target concept.

4. Once the classifier is trained, SVMCD
Active returns the top-k most relevant images. These are the k

images farthest from the hyperplane on the query concept side.

Example Queries

We present two example queries in Figure 1 to demonstrate how a query concept is learned in an

iterative process to improve query results. The user interface shows two frames. The frame on the left-

hand side is the feedback frame, on which the user marks images relevant to his or her query concept.

On the right-hand side, the search engine returns what it considers matching the concept learned this

far from the image database. The column on the left-hand side of Figure 1 shows three iterations of a

“cat” query; the column on the right-hand side shows three iterations of an “eagle” query.

To query “cat,” we first enter keyword cat to get the first screen of results in Figure 1(a). The right-

hand-side frame shows a couple of images containing cats, but several images containing tigers or lions.

This is because many tiger/lion images were annotated with “wild cat” or “cat.” To disambiguate

1The input space (denoted as X in Machine Learning and Statistics literature) is defined as the original space in which
the data vectors are located, and the feature space (denoted as F) is the space into which the data are projected, either
linearly or non-linearly.

3

(a) Cat Iteration 2 (b) Eagle Iteration 1

(c) Cat Iteration 4 (d) Eagle Iteration 2

(e) Cat Iteration 4 (f) Eagle Iteration 6

Figure 1: Two Example Queries, “Cat” on the left, and “Eagle” on the right.

4

the concept, we click on a couple of cat images on the feedback frame. SVMCD
Active refines the class

boundary, and then returns the second screen in Figure 1(c). In this figure, we can see that the results

in the (right-hand-side) result frame have been much improved. All returned images contain a cat or

two. After we perform another couple of rounds of feedback to make some slight refinement, the third

screen in Figure 1(e) shows satisfactory results.

For the “eagle” query, we would like to find “sitting eagles.” Since keyword “sitting” was not used

to annotate any of the eagle images in the database, we cannot rely on keywords to find matching

images. Typing in “eagle,” we do obtain mostly eagle images returned in Figure 1(b). However, only

the eagles on the top row display a sitting posture. We provide feedback to the system by clicking on

relevant images on the feedback frame. We are able to remove “flying eagle” images after two iterations,

and “wooden sitting eagles” after another two iterations. All but one image in Figure 1(f) satisfy the

“sitting eagles” query concept.

The rest of this paper is organized into five sections. Section 2 surveys related work. Section 3

introduces SVMs and the notion of a version space which in Section 4 provides theoretical motivation for

sampling methods of performing active learning with SVMs. Section 5 presents the concept-dependent

component of SVMCD
Active . In Section 6, we report experimental results on several datasets. Finally, we

offer our conclusions in Section 7.

2 Related Work

Machine learning and relevance feedback techniques have been proposed to learn and to refine query

concepts. The problem is that most traditional techniques require a large number of training instances

[2, 33, 41, 66, 67], and they require seeding a query with “good” examples [32, 48, 65, 46]. Unfortunately,

in many practical scenarios, a learning algorithm must work with a scarcity of training data and a limited

amount of training time.

2.1 Machine Learning

Of late, ensemble techniques such as bagging [3], arcing [4], and boosting [24, 52, 64] have been proposed

to improve classification accuracy for decision trees and neural networks. These ensemble schemes

enjoy success in improving classification accuracy through bias or variance reduction, but they do not

help reduce the number of samples and time required to learn a query concept. In fact, most ensemble

schemes actually increase learning time because they introduce learning redundancy in order to improve

prediction accuracy [18, 24, 30, 42].

To reduce the number of required samples, researchers have conducted several studies of active

learning [12, 8, 29, 58] for classification. Active learning can be modeled formally as follows: Given

a dataset S consisting of an unlabeled subset U and a labeled subset L, an active learner has two

components: f and q. The f component is a classifier that is trained on the current set of labeled

5

data L. The second component q is the sampling function that, given a current labeled set L, decides

which subset u in U to select to query the user. The active learner returns a new f after each round of

relevance feedback. The sampling techniques employed by the active learner determine the selection of

the next batch of unlabeled instances to be labeled by the user.

The query by committee (QBC) algorithm [22, 54] is a representative active learning scheme. QBC

uses a distribution over all possible classifiers and attempts greedily to reduce the entropy of this

distribution. This general purpose algorithm has been applied in a number of domains (although, to

our knowledge, not to the image retrieval domain) using classifiers (such as Naive Bayes classifiers [17,

39]) for which specifying and sampling classifiers from a distribution is natural. Probabilistic models

such as the Naive Bayes classifier provide interpretable results and principled ways to incorporate

prior knowledge. However, they typically do not perform as well as discriminative methods such as

SVMs [31, 20], especially when the amount of training data is scarce. (See our SVM-based approach

in Section 3.) For image retrieval where a query concept is typically non-linear2, our SVMCD
Active with

kernel mapping provides more flexible and accurate concept modeling.

Specifically for image retrieval, the PicHunter system [15, 14, 13, 16] uses Bayesian prediction to

infer the goal image, based upon users’ input. Mathematically, the goal of PicHunter is to find a single

goal point in the feature space (e.g., a particular flower image), whereas our goal is to hunt down all

points that match a query concept (e.g., the entire flower category, which consists of flowers of different

colors, shapes, and textures, and against different backgrounds). Note that the points matching a

target concept can be scattered all over the feature space. To find these points quickly with few hints,

our learning algorithms must deal with many daunting challenges [11].

2.2 Relevance Feedback

The study of [49] puts relevance feedback techniques proposed by the Information Retrieval (IR) into

three categories: query reweighting, query point movement and query expansion.

•Query reweighting and query point movement [28, 45, 44, 48, 51]. Both query reweighting and query

point movement use nearest-neighbor sampling: They return top ranked objects to be examined by

the user and then refine the query based on the user’s feedback. If the initial query example is

good and the query concept is convex in the feature space [28, 65], this nearest-neighbor sampling

approach works fine. Unfortunately, most users do not have a good example to start a query, and

most image-query concepts are non-convex.

•Query expansion [49, 65]. The query expansion approach can be regarded as a multiple-instance

sampling approach. The samples of a subsequent round are selected from the neighborhood (not

necessarily the nearest ones) of the positive-labeled instances of the previous round. The study of

[49] shows that query expansion achieves only a slim margin of improvement (about 10% in preci-

2A query such as “animals”, “women”, and “european architecture” does not reside contiguously in the space formed
by the image features.

6

Figure 2: A simple linear Support Vector Machine

sion/recall) over query point movement.

Almost all traditional relevance feedback methods require seeding the methods with “good” positive

examples [21, 25, 27, 38, 56, 57, 63], and most methods do not use negative-labeled instances effec-

tively. For instance, sunset images must be supplied as examples in order to search for sunset pictures.

However, finding good examples should be the job of a search engine itself. SVMCD
Active effectively uses

negative-labeled instances to induce more negative instances, and thereby improves the probability of

finding positive instances. At the same time, our active-learning approach selects the most informative

unlabeled instances to query the user to gather maximum amount of information to disambiguate the

user’s query concept. Because of the effective use of negative and unlabeled instances, our method

can learn a query concept much faster and more accurately than the traditional relevance-feedback

methods.

3 Support Vector Machines and Version Space

Support vector machines are a core machine learning technology. They have strong theoretical foun-

dations and excellent empirical successes. They have been applied to tasks such as handwritten digit

recognition [61], object recognition [47], and text classification [31].

We shall consider SVMs in the binary classification setting. We are given training data {x1 . . .xn}

that are vectors in some space X ⊆ Rd. We are also given their labels {y1 . . . yn} where yi ∈ {−1, 1}.

In their simplest form, SVMs are hyperplanes that separate the training data by a maximal margin

(see Fig. 2). All vectors lying on one side of the hyperplane are labeled as −1, and all vectors lying

on the other side are labeled as 1. The training instances that lie closest to the hyperplane are called

support vectors. More generally, SVMs allow us to project the original training data in space X to a

higher dimensional feature space F via a Mercer kernel operator K. In other words, we consider the

7

(a) (b) (c)

Figure 3: (a) Version space duality. The surface of the hypersphere represents unit weight vectors.
Each of the two hyperplanes corresponds to a labeled training instance. Each hyperplane restricts
the area on the hypersphere in which consistent hypotheses can lie. Here version space is the surface
segment of the hypersphere closest to the camera. (b) An SVM classifier in version space. The dark
embedded sphere is the largest radius sphere whose center lies in version space and whose surface does
not intersect with the hyperplanes. The center of the embedded sphere corresponds to the SVM, its
radius is the margin of the SVM in F and the training points corresponding to the hyperplanes that it
touches are the support vectors. (c) Simple Margin Method.

set of classifiers of the form: f(x) =
∑n

i=1 αiK(xi,x). When f(x) ≥ 0 we classify x as +1, otherwise

we classify x as −1.

When K satisfies Mercer’s condition [6] we can write: K(u,v) = Φ(u) ·Φ(v) where Φ : X→ F and

“·” denotes an inner product. We can then rewrite f as:

f(x) = w ·Φ(x), where w =

n
∑

i=1

αiΦ(xi). (1)

Thus, by using K we are implicitly projecting the training data into a different (often higher dimen-

sional) feature space F. The SVM then computes the αis that correspond to the maximal margin

hyperplane in F. By choosing different kernel functions we can implicitly project the training data

from X into space F. (Hyperplanes in F correspond to more complex decision boundaries in the original

space X.)

Two commonly used kernels are the polynomial kernel K(u,v) = (u · v + 1)p, which induces

polynomial boundaries of degree p in the original space X, and the radial basis function kernel K(u,v) =

(e−γ(u−v)·(u−v)), which induces boundaries by placing weighted Gaussians upon key training instances.

In the remainder of this paper we will assume that the modulus of the training data feature vectors

are constant, i.e., for all training instances xi, ‖Φ(xi)‖ = ϕ for some fixed ϕ. The quantity ‖Φ(xi)‖ is

always constant for radial basis function kernels, and so the assumption has no effect for this kernel.

For ‖Φ(xi)‖ to be constant with the polynomial kernels we require that ‖xi‖ be constant. It is possible

to relax this constraint on Φ(xi) [58].

Given a set of labeled training data and a Mercer kernel K, there is a set of hyperplanes that separate

the data in the induced feature space F. We call this set of consistent hyperplanes or hypotheses the

version space [40]. In other words, hypothesis f is in version space if for every training instance xi with

label yi we have that f(xi) > 0 if yi = 1 and f(xi) < 0 if yi = −1. More formally:

8

Definition 3.1 Our set of possible hypotheses is given as:

H =

{

f | f(x) =
w ·Φ(x)

‖w‖
where w ∈W

}

,

where our parameter space W is simply equal to F. The Version space, V is then defined as:

V = {f ∈ H | ∀i ∈ {1 . . . n} yif(xi) > 0}.

Notice that since H is a set of hyperplanes, there is a bijection (an exact correspondence) between unit

vectors w and hypotheses f in H. Thus we will redefine V as:

V = {w ∈W | ‖w‖ = 1, yi(w ·Φ(xi)) > 0, i = 1 . . .n}.

Note that a version space exists only if the training data are linearly separable in the feature space.

Thus, we require linear separability of the training data in the feature space. This restriction is much

less harsh than it might at first seem. First, the feature space often has a very high dimension and so in

many cases it results in the data set being linearly separable. Second, as noted by [55], it is possible to

modify any kernel so that the data in the newly induced feature space is linearly separable. This is done

by redefining all training instances xi: K(xi,xi) ← K(xi,xi) + ν where ν is a positive regularization

constant. The effect of this modification is to permit linear non-separability of the training data in the

original feature space.

There exists a duality between the feature space F and the parameter space W [61, 26] which we

shall take advantage of in the next section: points in F correspond to hyperplanes in W and vice versa.

Clearly, by definition, points in W correspond to hyperplanes in F. The intuition behind the converse

is that observing a training instance xi in feature space restricts the set of separating hyperplanes to ones

that classify xi correctly. In fact, we can show that the set of allowable points w in W is restricted to

lie on one side of a hyperplane in W. More formally, to show that points in F correspond to hyperplanes

in W, suppose we are given a new training instance xi with label yi . Then any separating hyperplane

must satisfy yi(w ·Φ(xi)) > 0. Now, instead of viewing w as the normal vector of a hyperplane in F,

think of yiΦ(xi) as being the normal vector of a hyperplane in W. Thus yi(w ·Φ(xi)) = w ·yiΦ(xi) > 0

defines a half-space in W. Furthermore w · yiΦ(xi) = 0 defines a hyperplane in W that acts as one of

the boundaries to version space V. Notice that version space is a connected region on the surface of a

hypersphere in parameter space. See Fig.3(a) for an example.

SVMs find the hyperplane that maximizes the margin in feature space F. One way to pose this is

as follows:

maximizew∈F mini{yi(w ·Φ(xi))}

subject to: ‖w‖ = 1

yi(w ·Φ(xi)) > 0 i = 1 . . .n.

By having the conditions ‖w‖ = 1 and yi(w · Φ(xi)) > 0 we cause the solution to lie in version

space. Now, we can view the above problem as finding the point w in version space that maximizes

9

the distance mini{w · yiΦ(xi)}. From the duality between feature and parameter space, and since

‖Φ(xi)‖ = 1, then each yiΦ(xi) is a unit normal vector of a hyperplane in parameter space and each

of these hyperplanes delimits the version space. Thus we want to find the point in version space that

maximizes the minimum distance to any of the delineating hyperplanes. That is, SVMs find the center

of the largest radius hypersphere whose center can be placed in version space and whose surface does

not intersect with the hyperplanes corresponding to the labeled instances, as in Figure 3(b). It can

be easily shown that the hyperplanes touched by the maximal radius hypersphere correspond to the

support vectors and that the radius of the hypersphere is the margin of the SVM.

4 Active Learning and Batch Sampling Strategies

SVMCD
Active performs the following two steps for each round of relevance feedback until the process is

terminated by the user.

• Sampling. Select a batch of images and ask the user to label them as either “relevant” or “irrele-

vant” to the query concept, and

• Learning. Learn an SVM on data labeled thus far.

After the relevance feedback rounds have been performed, SVMCD
Active retrieves the top-k most relevant

images. The final SVM boundary separates “relevant” images from irrelevant ones. The top-k most

“relevant” images are the k images farthest from the SVM boundary on the relevant side. The key step

of SVMCD
Active is its sampling step in which it selects most useful images to solicit user feedback. In the

remainder of this section, we present the theoretical foundation of SVMCD
Active (Section 4.1), and then

four sampling strategies (Section 4.2).

4.1 Theoretical Foundation

In pool-based active learning we have a pool of unlabeled instances. It is assumed that the instances x

are independently and identically distributed according to some underlying distribution F (x), and the

labels are distributed according to some conditional distribution P (y | x).

Given an unlabeled pool U, an active learner ` has three components: (f, q, L). The first component

is a classifier, f : L → {−1, 1}, trained on the current set of labeled data L (and possibly unlabeled

instances in U too). The second component q(L) is the querying function that, given a current labeled

set L, decides which instance in U to query next. The active learner can return a classifier f after each

pool-query (online learning) or after some fixed number of pool-queries.

The main difference between an active learner and a regular passive learner is the querying compo-

nent q. This brings us to the issue of how to choose the next unlabeled instance in the pool to query.

10

We use an approach that queries such instances in order to reduce the size of the version space as much

as possible. We need one more definition before we can proceed:

Definition 4.1 Area(V) is the surface area that the version space V occupies on the hypersphere ‖w‖ =

1.

We wish to reduce the version space as fast as possible. Intuitively, one good way of doing this is to

choose a pool-query that halves the version space. More formally, we can use the following lemma to

motivate which instances to use as our pool-query:

Lemma 4.2 (Tong & Koller, 2000) Suppose we have an input space X, finite dimensional feature space

F (induced via a kernel K), and parameter space W. Suppose active learner `∗ always queries instances

whose corresponding hyperplanes in parameter space W halves the area of the current version space.

Let ` be any other active learner. Denote the version spaces of `∗ and ` after i pool-queries as V∗
i

and

Vi respectively. Let P denote the set of all conditional distributions of y given x. Then,

∀i ∈ N+ sup
P∈P

EP [Area(V∗
i
)] ≤ sup

P∈P

EP[Area(Vi)],

with strict inequality whenever there exists a pool-query j ∈ {1 . . . i} by ` that does not halve version

space Vj−1.

This lemma says that, for any given number of pool-queries, `∗ minimizes the maximum expected

size of the version space, where the maximum is taken over all conditional distributions of y given x.

Now, suppose w∗ ∈W is the unit parameter vector corresponding to the SVM that we would have

obtained had we known the actual labels of all of the data in the pool. We know that w∗ must lie in each

of the version spaces V1 ⊃ V2 ⊃ V3 . . ., where Vi denotes the version space after i pool-queries. Thus,

by shrinking the size of the version space as much as possible with each pool-query we are reducing as

fast as possible the space in which w∗ can lie. Hence, the SVM that we learn from our limited number

of pool-queries will lie close to w∗.

This discussion provides motivation for an approach in which we query instances that split the

current version space into two equal parts insofar as possible. Given an unlabeled instance x from the

pool, it is not practical to explicitly compute the sizes of the new version spaces V− and V+ (i.e., the

version spaces obtained when x is labeled as −1 and +1 respectively). There is a way of approximating

this procedure as noted by [59]:

Simple Method. Recall from Section 3 that, given data {x1 . . .xi} and labels {y1 . . . yi}, the SVM

unit vector wi obtained from this data is the center of the largest hypersphere that can fit inside the

current version space Vi. The position of wi in the version space Vi clearly depends on the shape of the

region Vi; however, it is often approximately in the center of the version space. Now, we can test each

of the unlabeled instances x in the pool to see how close their corresponding hyperplanes in W come

11

to the centrally placed wi. The closer a hyperplane in W is to the point wi, the more centrally it is

placed in version space, and the more it bisects version space. Thus we can pick the unlabeled instance

in the pool whose hyperplane in W comes closest to the vector wi. For each unlabeled instance x,

the shortest distance between its hyperplane in W and the vector wi is simply the distance between

the feature vector Φ(x) and the hyperplane wi in F—which is easily computed by |wi ·Φ(x)|. This

results in the natural Simple rule:

• Learn an SVM on the existing labeled data and choose as the next instance to query the pool

instance that comes closest to the hyperplane in F.

Figure 3(c) presents an illustration. In the stylized picture we have flattened out the surface of

the unit weight vector hypersphere that appears in Figure 3(a). The white area is version space Vi

which is bounded by solid lines corresponding to labeled instances. The five dotted lines represent

unlabeled instances in the pool. The circle represents the largest radius hypersphere that can fit in

the version space. Note that the edges of the circle do not touch the solid lines—just as the dark

sphere in Figure3(b) does not meet the hyperplanes on the surface of the larger hypersphere (they meet

somewhere under the surface). The instance b is closest to the SVM wi and so we will choose to query

b.

Our SVMCD
Active image retrieval system uses radial basis function kernels. As noted in Section 3,

radial basis function kernels have the property that ‖Φ(xi)‖ = λ. The Simple querying method can still

be used with other kernels when the training data feature vectors do not have a constant modulus, but

the motivating explanation no longer holds since the SVM can no longer be viewed as the center of the

largest allowable sphere. However, alternative motivations have recently been proposed by Campbell,

Cristianini and Smola [7] that do not require a constraint on the modulus.

4.2 Sampling Strategies

For the image retrieval domain, we have a need for performing multiple pool-queries at the same

time. It is not practical to present one image at a time for the user to label, because he or she is

likely to lose patience after a few rounds. To prevent this from happening, we present the user with

multiple images (say, h) at each round of pool-querying. Thus, for each round, the active learner has

to choose not just one image to be labeled but h. Theoretically it would be possible to consider the

size of the resulting version spaces for each possible labeling of each possible set of h pool-queries,

but clearly this would be impractical. Thus instead, for matters of computational efficiency, SVMCD
Active

employs heuristic methods for choosing unlabeled instances. We present and examine the following four

sampling strategies: speculative, batch-simple, angle-diversity, and error-reduction. (For other relevant

work, please consult [37, 23, 43].)

12

Speculative

Input: L, U, h; /* labeled set, unlabeled set, batch size

Output: S; /* Pool-queries or samples

Procedures:
• SVMTrain() /* SVM training algorithm

• f() /* Classifier learned by SVMs on L

Initialization:
• S ← ∅
BEGIN

1. if (h = 0) then return ∅;
2. f ← SVMTrain(L);

3. For each xi ∈ U

xi.distance← | f(xi) |;
4. xs ← argmin

xi∈U
(xi.distance);

5. U← U − {xs}; L← L ∪ {xs};
6. xs.label← +;

7. S ← S ∪ Speculative(L,U, (h − 1)/2);

8. xs.label← −;

9. S ← S ∪ Speculative(L,U, h− (h − 1)/2);

10. S ← S ∪ {xs};
11. return S;

END

Figure 4: Speculative Sampling.

4.2.1 Speculative Sampling

We present a speculative procedure, which recursively generates samples by speculating user feedback.

The speculative procedure may not be a practical method because it’s computationally intensive. We

use it as a yardstick to measure how well the other active-learning strategies perform. The algorithm

starts by finding one most informative sample (the closest unlabeled instance to the hyperplane). It then

speculates upon the two possible labels of that sample (positive and negative, respectively). Assuming

the sample would be labeled as positive, speculative generates a hyperplane and finds a most informative

sample with respect to that hyperplane. Assuming the sample would be labeled as negative, it again

generates a hyperplane and finds a most informative sample with respect to that hyperplane. (At this

point, it has generated three samples.) The algorithm speculates recursively, generating a binary tree

of samples. Figure 4 presents the speculative algorithm. Steps 6 and 8 of the algorithm speculate

the pool-query to be positive and negative, respectively, and recursively call the speculative procedure

to select the next samples. The speculative procedure terminates after at least h samples have been

generated.

4.2.2 Batch-Simple Sampling

The batch-simple strategy chooses h unlabeled instances closest to the separating hyperplane (between

the relevant and the irrelevant instances in the feature space) to solicit user feedback. Figure 5 summa-

rizes the algorithm. Based on the labeled pool L, the algorithm first trains a binary classifier f (step

1). The binary classifier f is then applied to the unlabeled pool U to compute each unlabeled instance’s

13

Batch-Simple

Input: L, U, h; /* labeled set, unlabeled set, batch size

Output: S; /* Pool-queries or samples

Procedures:
• SVMTrain() /* SVM training algorithm

• f() /* Classifier learned by SVMs on L

Initialization:
• S ← ∅
BEGIN

1. f ← SVMTrain(L);

2. For each xi ∈ U

xi.distance← |f(xi)|;
3. While (|S| < h)
xs ← argmin

xi∈U
(xi.distance);

S ← S ∪ {xs}; U← U− {xs};
4. return S;

END

Figure 5: Batch-Simple Sampling Algorithm.

distance to the separating hyperplane (step 2). The h unlabeled instances closest to the hyperplane and

relatively apart from each other are chosen as the next batch of samples for conducting pool-queries.

4.2.3 Angle-Diversity Sampling

The main idea (described in Step 2 of Figure 6) of angle-diversity [5] is to select a collection of samples

close to the classification hyperplane, and at the same time, maintain their diversity. The diversity of

samples is measured by the angles between the samples. Given an example xi, its normal vector is

equal to Φ(xi). The angle between two hyperplanes hi and hj , corresponding to instances xi and xj ,

can be written in terms of the kernel operator K:

| cos(6 (hi,hj))| =
|Φ(xi) · Φ(xj)|

‖Φ(xi)‖‖Φ(xj)‖
=

|K(xi,xj)|
√

K(xi,xi)K(xj ,xj)

The angle-diversity algorithm starts with an initial hyperplane hi trained by the given labeled set L.

Then, for each unlabeled instance xj , it computes its distance to the classification hyperplane hi. The

angle between the unlabeled instance xj and the current sample set S is defined as the maximal angle

from instance xi to any instance xj in set S. This angle measures how diverse the resulting sample set

S would be, if instance xj were to be chosen as a sample.

Algorithm angle-diversity introduces parameter λ to balance two components: the distance to the

classification hyperplane and the diversity of angles among samples. Incorporating the trade-off factor,

the final score for the unlabeled instance xi can be written as

λ ∗ |f(xi)|+ (1− λ) ∗ (max
xj∈S

|k(xi,xj)|
√

K(xi,xi)K(xj ,xj)
), (2)

where function f computes the distance to the hyperplane, function K is the kernel operator, and S

the training set. After that, the algorithm selects the unlabeled instance that enjoys the smallest score

14

Angle Diversity

Input: L, U, h, λ; /* Training set, unlabeled set, batch size, weighting parameter

Output: S; /* Sample set

Procedures:
• SVMTrain() /* SVM training algorithm

• f() /* Classifier learned by SVMs on L

•K(); /* SVM kernel function

Initialization:
• S ← ∅
BEGIN

1. f ← SVMTrain(L);

2. While (|S| < h)

xs ← argmin
xi∈U

((λ ∗ |f(xi)|+ (1 − λ) ∗ (maxxj∈S
|k(xi,xj)|√

K(xi,xi)K(xj ,xj)
)

S ← S ∪ {xs};
3. return S;

END

Figure 6: Angle Diversity Sampling.

in U as the sample. The algorithm repeats the above steps h times to select h samples. In practice,

with trade-off parameter λ set at 0.5, [5] shows that the algorithm achieves good performance “on the

average.” We will show in Section 5.3.4 that λ can be adjusted in a concept-dependent way according

to the diversity of the target concept.

4.2.4 Error-Reduction Sampling

Arriving from another perspective, Roy and McCallum [50] proposed an active learning algorithm that

attempts to reduce the expected error on future test examples. In other words, their approach aims

to reduce future generalization error. Since the class-prediction error on unseen examples cannot be

known in advance, Roy and McCallum proposed a method for estimating future error. Suppose we

are given a labeled set L and an unlabeled set U = {x1 . . .xn} where each xi is a vector. Suppose the

distribution P (x) of the image vectors is assumed to be i.i.d.. In addition, each image xi is associated

with a label yi ∈ {−1, 1} according to some unknown conditional distribution P (y|x). The classifier

trained by the labeled set L can estimate an output distribution P̂L(y|x) for a given input x. Then the

expected error of the classifier can be written as

E[Error
P̂L

] =

∫

x

Loss(P (y|x), P̂L(y|x))P(x)dx.

The function Loss is some loss function employed to measure the difference between the true

distribution, P (y|x), and its estimation, P̂L(y|x). One popular loss function is the log loss function

which is defined as follows:

Loss(P (y|x), P̂L(y|x)) =
∑

y∈{−1,1}

P(y|x)log(P̂L(y|x)).

The algorithm proposed by Roy and McCallum selects a query, x∗, that causes minimal error. The

15

Error Reduction

Input: L, U, h; /* Training set, unlabeled set, batch size

Output: S; /* Sample set

Procedures:
• SVMTrain(),

• f(), g() /* Classifier learned by SVMs

•Regression() /* Perform logic regression

Variables:
• Γ, Ψ; /* local training and test set

Initialization:
• S ← ∅
BEGIN

1. f ← SVMTrain(L);

2. For each xi ∈ U

3 P̂L(y |xi)← Regression(|f(xi)|);
Ψ← U− {xi};
xi.loss← 0;

Γ← L ∪ {xi, 1}; /* assign positive label

g ← SVMTrain(Γ);

4. For each xj ∈ U

P̂Γ(y |x)← Regression(|g(xj)|);
xi.loss← xi.loss + P̂L(y |xi) ∗

∑

y∈{−1,1}
P̂Γ(y |x)log(P̂Γ(y |x));

Γ← L ∪ {xi,−1}; /* assign negative label

g ← SVMTrain(Γ);

5. For each xj ∈ U

P̂Γ(y |x)← Regression(|g(xj)|);
xi.loss← xi.loss + (1− P̂L(y |xi)) ∗

∑

y∈{−1,1}
P̂Γ(y |x)log(P̂Γ(y |x));

6. While (|S| < h)
xs ← argmin

xi∈U
(xi.loss) ; S ← S ∪ {xs};

7. return S;

END

Figure 7: Error Reduction Sampling.

algorithm includes x∗ in its sample set if E[Error
P̂L∪{x∗}

] is smaller than E[Error
P̂L∪{x}

] for any other

instance x. Figure 7 summarizes the algorithm. Given the training pool L, the algorithm first computes

the current classifier’s posterior P̂L(y|x) in step 3. For each unlabeled image x with each possible label

y, the algorithm then adds the pair (x, y) to the training set, re-trains the classifier with the enlarged

training set, and computes the expected log loss. Steps 4 and 5 of the algorithm compute the expected

log loss by adding (x, y) to the training data.

5 Concept-Dependent Learning

Ideally, concept learning should be done in a concept-dependent manner. For a simple concept, we can

employ, e.g., algorithm angle diversity or batch simple to learn the concept. For a complex concept, we

must make proper adjustments in the learning algorithm. We define concept complexity as the level

of difficulty in learning a target concept. To model concept complexity, we propose three quantitative

measures [34]: scarcity, isolation, and diversity.

16

In the remainder of this section, we will first define our measures for quantifying query complexity.

We will then discuss major limitations of current active learning algorithms. Finally, we propose

detailed algorithms of the concept-dependent component of SVMCD
Active , which uses keywords to guide

learning in the perceptual space, to alleviate the limitations.

5.1 Concept Complexity

Before we can compute the concept complexity, we need to know the user’s target concept, which

is unavailable beforehand. Fortunately, we have a rough description of an image’s semantic content

from its keyword-annotation (even though the annotation quality might not be perfect). We treat

each keyword as a concept, and precompute scarcity, isolation, and diversity to characterize concept

complexity in advance.

5.1.1 Scarcity

Scarcity measures how well-represented a concept is in the retrieval system. We use hit-rate, defined as

the percentage of data matching the concept, to indicate scarcity. As we assume that each keyword is

equivalent to a concept, the hit-rate of a keyword is the number of images being annotated with that

keyword. This parameter is dataset-dependent; while a concept such as photography is very general and

may produce a high hit-rate, other general concepts such as landmark (209 images in our 300K-dataset)

may be scarce simply because the system does not contain many matching images. Similarly, a very

specific concept such as laboratory coat (1, 497 images) may have a high hit-rate solely because the

system has many such images.

5.1.2 Isolation

Isolation characterizes a concept’s degree of separation from the other concepts. We measure two types

of isolation: input space isolation and keyword isolation. The input space isolation is considered low (or

poor) when the concept is commingled with others in the perceptual space. When the keywords used

to describe a concept has several meanings or senses, the keyword isolation is considered poor; very

precise keywords provide good isolation. An example of a poorly-isolated keyword is “feline,” which is

often used to annotate images of tigers, lions and domestic cats. If the user seeds a query with “feline,”

it is difficult to tell which sense of the word the user has in mind. A well-isolated seed keyword like

“Eiffel Tower” has less ambiguity; we can be quite sure that the user is thinking about the famous

Parisian landmark. We estimate isolation as follows:

1. Input Space Isolation. We characterize the isolation of a concept in the perceptual input space

with:

Is(T, σ) =
1

NT

∑

xi∈T

N(T)

N(σ)
. (3)

17

For each instance xi that belongs to the target concept T , N(σ) is the number of instances that are

within an L1 distance of σ from xi, and N(T) is the number such instances that are from T . NT is

the total number of instances from T in the entire dataset. In essence, Is(T, σ) gives the percentage

of nearest neighbors (NNs) within a distance of σ that are from the target concept. The higher the

value of Is, the more isolated is the target concept. A low value indicates that the target concept is

commingled with others in the input space. Since Is is only an estimation, we use σ values ranging

from 1 to 9 in increments of one.

2. Mining Keyword Associations for Keyword Isolation. To measure keyword isolation, we employ

association-rules mining [1] to model the co-occurrences of keywords. Given a query keyword wq, we

find the set of images I that are annotated with wq. Let W be the set of keywords, besides wq, that

are used to annotate the images in I. For each 2-itemset {wq, wi}, where wi ∈ W , we compute the

confidence (Cqi) of the rule wq ⇒ wi. We define isolation of wq with respect to wi as

Ik(wq , wi) = Cqi × (1− Cqi). (4)

When Cqi is close to 0.5, Ik is at its maximum, which implies that the rule is highly ambiguous,

and that wq is poorly isolated from wi. Let us consider two query keywords “fruit” and “apple.”

Suppose the confidence value for the rule fruit⇒ apple is 0.5, and for apple⇒ fruit it is 0.7. Using

Equation 4, we get Ik = 0.25 for the first rule, and Ik = 0.21 for the second rule. We say that

the keyword “fruit” is poorly isolated from “apple”, whereas “apple” is well isolated from “fruit.”

Although “fruit” is a more general word than “apple” according to rules of linguistics, this is not

necessarily true in the annotations of the image-set. Therefore, employing a general thesaurus such

as Wordnet may be counter-productive for determining keyword isolation. The isolation value must

be computed in a dataset-dependent fashion. The causes of poor keyword isolation could be due

to the words being synonyms, or that some images contain semantics or objects described by the

words. To quantify isolation, we need not discern the reason of co-occurrences. When some words

often appear together with the query keyword in I, it indicates that the query keyword is ambiguous.

For instance, the word “apple” in our dataset is often associated with either “computer” or “fruit.”

Therefore, SVM
CD
Active needs to determine whether it is “computer” or “fruit” that is more relevant to

an “apple” query. With association-rules mining, the derived keyword isolation is dateset-dependent.

If our dataset only contains images of “fruit apple”, the concept “apple” will have good semantic

isolation. Thus, we only need to determine the semantic of the word when it appears in more than

one 2-itemsets.

We preview some empirical results to show that concept isolation can affect retrieval accuracy. Our

dataset consists of 300K images that are annotated with up to 40K annotation keywords altogether.

We choose 6K representative keywords—words that are not too common or too rare—to represent the

semantic classes present in this dataset. Figure 8 plots the average isolation value (Is in Equation 3) at

σ = 1 . . . 9 for the 6K concepts. Based on the Is values, we divide the concepts into three categories of

isolation: well-, moderately- and poorly-isolated. We notice that well-isolated concepts generally have

higher Is values at smaller σ, implying that similar NNs are nearby; poorly-isolated concepts generally

have very low Is values.

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 Is
ol

at
io

n
V

al
ue

Sigma

Well-isolated
Moderately-isolated

Poorly-isolated

Figure 8: Average Isolation Values.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

T
op

-2
0

P
re

ci
si

on

Number of Iterations

Well-isolated
Moderately-isolated

Poorly-isolated

Figure 9: Precision for Various Input-space Isolation Types.

Next, we use the angle diversity algorithm with λ = 0.5 to study the effect of isolation on retrieval

accuracy. To circumvent the scarcity problem, we use the keywords to seed each query with a positive

and negative example. Relevance feedback is then conducted purely on perceptual features. We are

not able to use keywords to bound the search as we are using keywords to indicate the query concept.

This experimental setup is different from that in Section 6 where real users interact with the retrieval

system to conduct relevance feedback. In Figure 9, we plot the average top-20 precision rates using

5 iterations of relevance feedback for the three types of isolation. As expected, the plot shows that

concepts with good isolation achieve higher precision rates.

19

5.1.3 Diversity

The diversity of a concept is characterized by the way relevant images are distributed in the input space;

it is an indication on how learnable a concept is. A diverse concept has relevant images scattered all

over the input space. For example, the flowers concept, which encompasses flowers of different colors

and types, is more diverse than the red roses concept. Instead of concentrating the sampling effort

on a few small subspaces, we want to explore more subregions of the input space and select diverse

samples to present to the user. As diversity is related to the spread of the relevant images in the

input space, we can characterize concept diversity using the spatial variance of images belonging to a

concept in the perceptual input space [19]. Alternatively, we can make use of the TSVQ clusters from

the indexer of our dataset [36]. Since clustering will group instances based on how they are scattered

in the input space, we characterize diversity using the distance between centroids of the clusters that

contain instances from the target concept.

5.2 Limitations of Active Learning

When the target concept instances are scarce and not well isolated, active learning can be ineffective for

locating relevant images.

The first limitation is related to scarcity—the availability of images relevant to the concept to

be learned. Most active learning algorithms require at least one positive (relevant) and one negative

(irrelevant) instance to begin the learning process. A common approach is to randomly sample images

from the input space. If none of the samples are labeled as positive, they are all treated as negatives,

which will be used to prune the sample space by applying an algorithm like [10]. The seed-image

sampling continues until we obtain a positive image. While this process is viable, it may not be

effective if the matching images are scarce. When the percentage of matching images is low, even if we

can winnow irrelevant images from the unlabeled pool, the probability of finding a positive image can

still be quite low. For instance, if a concept has 5% matching images, the probability is about 68% that

at least one of the 20 randomly selected images is positive. But when the concept is as scarce as 1%,

the probability declines to 20%. One can easily find scenarios where the number of concept-matching

images is much lower than 1%. Under such conditions, active learning can take many iterations just to

find one relevant image.

The second limitation—concept isolation—further complicates the problem. Figure 10 illustrates

this problem. The squares and circles represent images from two different concepts, which overlap each

other in the input space (Figure 10(a)). Suppose three images presented to the user have been labeled

as follows: two squares are labeled as “irrelevant” (filled squares), and one circle is labeled “relevant”

(filled circle in Figure 10(b)). The circles around the filled squared can easily be mistakenly inferred

as squares, and the squares around the filled circles as circles. Figure 10(c) shows that after using the

kernel trick to project the instances into the feature space, several instances lie on the wrong side of

20

Hyperplane

SVM

Target concept (waves)

Irrelevant concept (clouds)

User−labeled samples

(a) Input Space (b) User-provided Labels (c) Projected Feature Space

Figure 10: Example illustrating how poor concept isolation can hurt target concept learning.

the separating hyperplane. This is because the labeled images influence their neighboring images in

the input space to be classified into the same category and we have two classes mix together. As a

result, it is difficult to separate these two classes apart through any learning algorithm (unless we have

substantially larger amount of labeled instances, which defeats the purpose of active learning).

5.3 Concept-Dependent Active Learning Algorithms

SVMCD
Active consists of a state-transition table and three algorithms, disambiguate keywords (Figure 12)

disambiguate input-space (Figure 13), and angle diversity (Figure 6). First, SVMCD
Active addresses the

scarcity problem by using keywords to seed a query. Thus, we eliminate the need to search the entire

dataset for a positive image. The user can type in a keyword (or keywords) to describe the target

concept. Images that are annotated with that keyword are added to the initial unlabeled pool U. If

the number of images with matching keywords is small, we can perform query expansion3 using a

thesaurus to obtain related words (synonyms) that have matching images in our dataset. For each

related semantic, we select matching images and add them to U.

Using U to conduct learning, the hit-rate is much improved compared to using the entire dataset.

At this juncture, the state of learnability can be in one of the four states depicted in Figure 11. The

rows show that the specified keyword(s) may enjoy good or suffer from poor isolation. The columns

show that the query concept may be well or poorly isolated in the input space formed by the perceptual

features. The goal of SVMCD
Active is to move the learnability state of the target concept to the ideal state

A, where both keywords and perceptual features enjoy good isolation.

5.3.1 State C - Keyword Disambiguation

In state C, the keyword isolation is poor (due to aliasing). Thus, we first need to disambiguate the

keywords by presenting images of different semantics to the user. Once the semantic is understood, the

learnability makes a transition to state A.

3Query expansion is a vital component of any retrieval systems and it remains a challenging research area. This
component is not deployed in our system yet and is part of our ongoing research.

21

Perceptual
GoodPoor

Keyword
Good

Poor D

B

C

A
DK

DS

DK

Figure 11: Four Learnability States.

Disambiguate Keywords

Input: w, U , n; /* query word, unlabeled pool, sample #

H; /* keyword association table

Output: U ; /* unlabebed pool

Procedures:
• findAssociations(w, H) /* find w’s 2-itemsets in H

• relevanceFeedback(S) /* user labels S

Initialization:
• S ← ∅
BEGIN

1. A← findAssociations(w, H);

2. while (n 6= 0)
s← Random(U);

if (s.W ∩A 6= ∅) /* Check annotation set W of s

S ← S ∪ {s};
n← n− 1;

3. relevanceFeedback(S);

4. for each s− ∈ S
for each u ∈ U

if (s−.W ∩ u.W 6= ∅)
U ← U − {u};

5. return U ;

END

Figure 12: Disambiguate Keywords Algorithm.

Algorithm disambiguate keywords (DK) depicted in Figure 12 helps state C to arrive at A. The

algorithm first performs a lookup in the association table H for the query keyword w. If 2-itemsets

are found, the algorithm randomly selects in U images that are annotated by the co-occurred word set

A. The resulting sample set S is presented to the user to solicit feedback. Once feedback has been

received, SVMCD
Active removes images labeled with the words associated with the irrelevant images from

U.

5.3.2 State B - Input-space Disambiguation

State B has poor perceptual isolation but good keyword isolation. If the number of matching images

yielded by the good keyword is small, we can perform query expansion to enlarge the unlabeled sample

pool. For these poorly-isolated concepts, we attempt to improve the perceptual isolation of the sample

pool through input-space disambiguation. SVM
CD
Active employs disambiguate input-space (DS) in Fig-

ure 13 to achieve this improvement. The algorithm removes from U the instances that can interfere

22

Disambiguate Input-Space

Input: L, U w; /* labeled, unlabeled sample pool, keyword

Output: U ;

Procedures:
• query expansion(w);

• generateWordlist(L, type);

Initialization:
• P, N ← ∅
BEGIN

1. U ← U + query expansion(w);

2. P ← generateWordlist(L,Positive);

3. N ← generateWordlist(L,Negative);

4. for each u ∈ U
if (|u.W ∩N | > |u.W ∩ P |)

U ← U − {u};
5. return U ;

END

Figure 13: Dismbiguate Input-Space Algorithm.

with the learnability of the target concept. Let us revisit Figure 10. Rather than learning the labels of

both the square and circle classes, DS removes the instances of the non-target class from the sample

pool.

Given the current labeled pool of images, DS first generates two word lists: P from positive-labeled

images and N from negative-labeled images. In the third step, DS checks the annotation of each

image in the unlabeled pool for matches to words in P and N . If there are more negative keyword

matches, SVMCD
Active removes that image from U. Once perceptual isolation is enhanced, state B makes

the transition to A.

5.3.3 State D — Keyword & Space Disambiguation

State D suffers from both poor semantic and input-space isolation. To remedy the problem, SVMCD
Active

first improves the keyword isolation using the same DK strategy as state C. Thereafter, the state is

moved to state B, and the perceptual isolation is improved by applying state B’s method for disam-

biguation in the input space. Figure 11 shows the path that D takes to reach the ideal state A.

5.3.4 State A — Adapt to Diversity

Knowledge of the concept diversity can guide the learner during its exploration of the input space for

potential positive samples. For example, if a concept is very diverse, like flowers, the learner may need

to be more explorative and search for flowers of all colors. For such concepts, we make our learner more

explorative by changing the parameter λ used in our classification score function in the angle diversity

algorithm:
λ ∗ |f(xi)|+ (1− λ) ∗ (max

xj∈S

|k(xi,xj)|
√

K(xi,xi)K(xj ,xj)
).

23

If the concept diversity is low, we keep λ at its original value of 0.5. For diverse concepts, we reduce λ,

resulting in more weight being assigned to the angle diversity during sample selections.

6 Experiments and Discussion

We conducted experiments to answer the following five questions:

1. How does active learning perform, compared to passive learning in terms of retrieval accuracy?

(Section 6.2)

2. Can active learning outperform traditional relevance feedback schemes? (Section 6.3)

3. Which sampling strategies, batch simple, speculative, angle diversity, or error correction, perform

the best for SVMCD
Active , and why? (Section 6.4)

4. For concepts with differing degrees of isolation, can the multimodal approach of SVMCD
Active improve

the retrieval accuracy? (Section 6.5)

5. Can the angle diversity algorithm be tuned to accommodate highly diverse concepts? (Section 6.6)

6.1 Testbed and Setup

For empirical evaluation of SVMCD
Active , we used five image datasets: a four-category, a ten-category, a

fifteen-category, a 107-category, and a 300K real-world image dataset.

• Four-category set. The 602 Corel-CD images in this dataset belong to four categories — archi-

tecture, flowers, landscape, and people. Each category consisting of 100 to 150 images.

• Ten-category set. The 1, 277 images in this dataset belong to ten categories — architecture, bears,

clouds, flowers, landscape, people, objectionable images, tigers, tools, and waves. In this set, a

few categories were added to increase learning difficulty (i.e., to reduce hit rate and decrease

isolation). The tiger category contains images of tigers with landscape and water backgrounds to

complicate landscape category. The objectionable (pronographic) images can be confused with

people wearing little clothing (beach wear). Clouds and waves have substantial color similarity.

• Fifteen-category set. In addition to the ten categories in the above dataset, the total of 1, 920

images in this dataset includes elephants, fabrics, fireworks, food, and texture. We added elephants

with landscape and water backgrounds to increase learning difficulty in distinguishing landscape,

tigers and elephants. We added colorful fabrics and food to interfere with flowers. Various texture

images (e.g., skin, brick, grass, water, etc.) were added to raise learning difficulty for all categories.

• 107-category set. This set consists of nearly 50, 000 images that we collected from Corel Image

CDs. The categories are documented in [9].

24

• Large set. A 300K-image dataset with images from a stock-photo company.

Each image is described by 144 perceptual features (108 from color and 36 from texture). (These

features have been thoroughly tested and verified to be quite effective. Since the focus of this paper

is not on feature extraction, please consult [58] for details.) In the large image dataset, each image is

annotated with up to 50 keywords; 40, 000 keywords are used in the entire dataset. For SVMCD
Active , we

used a Laplacian RBF kernel K(u,v) = (e−γ
∑

i
|ui−vi|), with the γ set at 0.001. For the parameter λ

used in the angle diversity algorithm, we set its default value at 0.5.

To obtain an objective measure of performance, we assumed that a query concept was an image

category. The SVM
CD
Active learner has no prior knowledge about image categories4. The goal of SVM

CD
Active

is to learn a given concept through a relevance feedback process. In this process, at each feedback round

SVMCD
Active selects sixteen or twenty images to ask the user to label as “relevant” or “not relevant” with

respect to the query concept. It then uses the labeled instances to successively refine the concept

boundary. After finishing the relevance feedback rounds, SVMCD
Active then retrieves the top-k most

relevant images from the dataset, based on the final concept it has learned. Accuracy is then computed

by looking at the fraction of the k returned result that belongs to the target image category. We note

that this computation is equivalent to computing the precision on the top-k images. This measure of

performance appears to be the most appropriate for the image retrieval task — particularly since, in

most cases, not all of the relevant images can be displayed to the user on one screen. As in the case of

web searching, we typically wish the first few screens of returned images to contain a high proportion

of relevant images. We are less concerned that not every single instance that satisfies the query concept

is displayed.

6.2 Active Learning vs. Passive

In this first experiment, we examined the gain of active learning over passive learning, and did not

activate the concept-dependent component of SVMCD
Active . Figures 14(a-c) show the average top-k

accuracy for the three small datasets. We considered the performance of SVMCD
Active after each round

of relevance feedback. The graphs indicate that performance clearly increases after each round. Also,

the SVMCD
Active algorithm’s performance degrades gracefully when the concept complexity is increased

— for example, after four rounds of relevance feedback, it achieves an average of 100%, 95%, and 88%

accuracy on the top-20 results for the three different sizes of data sets, respectively. It is also interesting

to note that SVMCD
Active is not only good at retrieving just the top few images with high precision, but

it also manages to sustain fairly high accuracy even when asked to return larger numbers of images.

For example, after five rounds of querying it attains 99%, 84% and 76% accuracy on the top-70 results

for the three different sizes of data sets respectively. (For these three datasets, all sampling strategies

4Unlike some recently developed systems [62] that contain a semantic layer between image features and queries to assist
query refinement, our system does not have an explicit semantic layer. We argue that having a hard-coded semantic layer
can make a retrieval system restrictive. Rather, dynamically learning the semantics of a query concept is more flexible
and hence makes the system more useful.

25

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

N um ber o f Im ages Retu rned (k)

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Round 5

Round 4

Round 3

Round 2

Round 1

(a) (b) (c)

Figure 14: (a) Average top-k accuracy over the four-category dataset. (b) Average top-k accuracy over
the ten-category dataset. (c) Average top-k accuracy over the fifteen-category dataset. Standard error
bars are smaller than the curves’ symbol size. Legend order reflects order of curves.

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Num ber of Images Return ed

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Active SVM

R egular SVM

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

N um ber o f Im ag es R etu rned

A
c

c
u

ra
c

y
 o

n
 R

e
tu

rn
e

d
 I

m
a

g
e

s

Active SVM

R egular SVM

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 110 130 150

Number of Im ages Returned (k)
A

c
cu

ra
cy

 o
n

 R
e

tu
rn

e
d

 I
m

a
g

e
s

20 random + 2 rounds of 20

20 random + 2 rounds of 10

20 random + 1 round of 20

(a) (b) (c)

Figure 15: (a) Active and regular passive learning on the fifteen-category dataset after three rounds
of querying. (b) Active and regular passive learning on the fifteen-category dataset after five rounds
of querying. (c) Comparison between asking ten images per pool-query round and twenty images per
pool-querying round on the fifteen-category dataset. Standard error bars are smaller than the curves’
symbol size. Legend order reflects order of curves.

work equally well. When the concept complexity further increases, we will see shortly in Section 6.4

that the angle-diversity method outperforms the others.)

We examined the effect that the active querying method had on performance. Figures 15(a) and (b)

compare the active querying method with the regular passive method of sampling. The passive method

chooses images randomly from the pool to be labeled. This method is typically used with SVMs since

it creates a randomly selected data set. It is clear that the use of active learning is beneficial in the

image retrieval domain. We gain a significant increase in performance (a 5% to 10% gain after five

iterations) by using the active method.

We used 20 images per pool-querying round. There is a tradeoff between the number of images to

be displayed in one round, and the number of querying rounds. The fewer images displayed per round,

26

the lower the performance. However, with fewer images per round we may be able to conduct more

rounds of querying and thus increase our performance. Figure 15(c) considers the effect of displaying

only ten images per round. In this experiment our first round consisted of displaying twenty random

images and then, on the second and subsequent rounds of querying, active learning with 10 or 20 images

is invoked. We notice that there is indeed a benefit to asking (20 random + two rounds of 10 images)

over asking (20 random + one round of 20 images). This is not surprising since the active learner has

more control and freedom to adapt when asking two rounds of 10 images rather than one round of 20.

What is interesting is that asking (20 random + two rounds of 20 images) is far, far better than asking

(20 random + two rounds of 10 images). The increase in the cost to users of asking 20 images per round

is often negligible since users can pick out relevant images easily. Furthermore, there is virtually no

additional computational cost in calculating the 20 images to query over the 10 images to query. (The

size of the training data is very small, under or around 100 in five iterations.) Thus, for this particular

task, we believe that it is worthwhile to display around 20 images per screen and limit the number of

querying rounds, rather than display fewer images per screen and use many more querying rounds.

6.3 Against Traditional Relevance Feedback Schemes

We compared SVM
CD
Active with two traditional query refinement methods: query point movement (QPM)

and query expansion (QEX). In this experiment, each scheme returned the 20 most relevant images

after up to five rounds of relevance feedback. To ensure that the comparison to SVMCD
Active was fair, we

seeded both schemes with one randomly selected relevant image to generate the first round of images.

On the ten-category image dataset, Figure 16(a) shows that SVMCD
Active achieves nearly 90% accuracy

on the top-20 results after three rounds of relevance feedback, whereas the accuracies of both QPM

and QEX never reach 80%. On the fifteen-image category dataset, Figure 16(b) shows that SVM
CD
Active

outperforms the others by even wider margins. SVMCD
Active reaches 80% top-20 accuracy after three

rounds and 94% after five rounds, whereas QPM and QEX cannot achieve 65% accuracy.

These results hardly surprise us. Traditional information retrieval schemes require a large number

of image instances to achieve any substantial refinement. By just refining around current relevant

instances, both QPM and QEX tend to be fairly localized in their exploration of the image space

and hence rather slow in exploring the entire space. In contrast, during the relevance feedback phase

SVM
CD
Active takes both the relevant and irrelevant images into account when choosing the next pool-

queries. Furthermore, it chooses to ask the user to label images that it regards as most informative

for learning the query concept, rather than those that have the most likelihood of being relevant. Thus

it tends to explore the feature space more aggressively.

6.4 Sampling Method Evaluation

This experiment was conducted to examine the performance of five sampling algorithms: random,

simple active, speculative, angle diversity, and error reduction. As we mentioned in Section 6.2, when the

27

60

70

80

90

100

1 2 3 4 5

Num ber of R ounds

To
p

-2
0

A
cc

ur
ac

y
Active SVM

QEX

QPM

50

60

70

80

90

100

1 2 3 4 5

Num ber of R ounds

To
p

-2
0

A
cc

ur
ac

y

Active SVM

QEX

QPM

(a) (b)

Figure 16: (a) Average top-k accuracy over the ten-category dataset. (b) Average top-k accuracy over
the fifteen-category dataset.

concept complexity is low, all sampling methods perform about the same. To conduct this experiment,

we used the 107-category dataset.

The first strategy selects random images from the dataset as samples for user feedback. The rest of

the sample algorithms have been described in Section 4.2. We conducted experiments to compare these

five sampling strategies in terms of two factors: the top-k retrieval accuracy and execution times. In

the experiments, we tested the sampling algorithms by fixing the number of sample images per-round

at sixteen.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Iteration

T
o
p
 2

0
 P

re
c
is

io
n

random
simple
angle
speculative
estimation

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

T
o
p
 5

0
 P

re
c
is

io
n

random
simple
angle
speculative
estimation

(a) Top-20 accuracy (b) Top-50 accuracy

Figure 17: Comparison of Sampling Strategies.

Figures 17(a) and 17(b) report the results for the 107-category dataset. For this dataset, it is too

expensive to scan the entire dataset to perform sample selection and retrieval. Therefore, we conducted

sampling and retrieval approximately through an indexing structure [36]. The figures show that the

angle diversity algorithm performs the best among all active-learning algorithms. The angle diversity

algorithm performs as well, and even better in some interactions, as the speculative algorithm, which

is supposed to achieve nearly optimal performance. This result confirms that the samples should be

28

1 2 3 4 5 6 7 8
10

−2

10
0

10
2

10
4

10
6

Iteration
T

im
e
 (

m
s
e
c
)

random
simple
angle
speculative
estimation

Figure 18: Execution time on large dataset.

diverse, as well as semantically uncertain (near the hyperplane).

Next, Figure 18 evaluates the execution time (in milli-seconds) taken by the five algorithms. The

figure shows that the fastest sampling algorithm is the random method, followed by angle diversity,

simple active, speculative, and then error-reduction. Thus, angle diversity algorithm is the ideal choice

in terms of both effectiveness and efficiency.

6.5 Concept-Dependent Learning

This experiment was designed to assess the effectiveness of the concept-dependent approach to image

retrieval. The experiments were conducted on a dataset comprising 300K images of a stock-photo

company’s.

We evaluated retrieval accuracy (in terms of precision) for concepts belonging to one of the four

possible learnability states depicted in Figure 11. The representative concepts we queried, based on

their learnability states, are shown in Table 1. The angle diversity (AD) sampling strategy is used as

the baseline for comparing the performance of the other algorithms used to modify the sample pool,

namely disambiguate input-space (DS) and disambiguate keywords (DK).

State A B C D
castle frog apple bug
crabs lion bird city
crayfish Paris cat dessert
fireworks river china fruit
outer space tiger fish mountain

Table 1: Queries for various states of learnability.

29

(a) Good keyword and perceptual (b) Good keyword, poor perceptual

(c) Poor keyword, good perceptual (d) Poor keyword and perceptual

Figure 19: Results for the four states of keyword and perceptual isolation.

6.5.1 State B (Figure 19(b))

The concepts belonging to state B have good keyword isolation but poor perceptual isolation. We

used the DS algorithm to weed the sample pool of images annotated by negative keywords. The figure

shows the retrieval performance of the DS algorithm and the baseline’s. In the 5th iteration, DS gives

a 99% precision rate compared to 90% for the baseline. On average, we can improve the precision rate

by 10%. The results show that DS is effective for increasing the concept’s perceptual isolation.

6.5.2 State C (Figure 19(c))

In order to resolve the aliasing problem for concepts with poor keyword isolation, we applied the DK

algorithm and compared its retrieval performance with the baseline AD’s. We notice that the difference

in precision rate after the first round of relevance feedback is 30% for AD and 40% for DK. The higher

precision rate for DK persists through subsequent iterations as well. By disambiguating keywords in

the initial sample pool, DK is able to provide better retrieval results.

30

(a) Adaptive Lambda (b) Results for Diverse Concepts

Figure 20: Concept diversity.

6.5.3 State D (Figure 19(d))

Concepts falling into this state are the most problematic. They suffer from both poor keyword and

poor perceptual isolation. The figure plots the retrieval results for four algorithms: the baseline, DS,

DK, and DK + DS. Using only DS to improve perceptual isolation, the precision rate is on average

10% higher than the baseline. Using only DK to improve the keyword isolation, the average precision

increase is 27%. When both DS and DK are used, the precision rate improves a couple of more

percentage points over the case when only DK is used. These results suggest that DK not only helps

to disambiguate keywords, but improves the perceptual isolation as well. This is not surprising, because

the high-frequency keywords that cause the aliasing problem often also describe concepts visually similar

to the target concept. Hence by labeling images from those other concepts as “negative”, the user can

simultaneously perform disambiguation in the perceptual space.

6.5.4 State A (Figure 19(a))

Since the keyword isolation is good in this state, we evaluated the effectiveness of DS for further

improving the already-good perceptual isolation. The plot shows the top-20 precision rate for up to 7

iterations of relevance feedback. We can observe that using negative keywords to remove samples makes

little difference to the retrieval results. We conclude that such concepts are ideal for active learning

and hence require no further assistance from keywords besides seeding the query.

6.6 Concept Diversity Evaluation

For highly-diverse concepts, we reduced the value of λ in Equation 2 so more weight is given to the

angle diversity during sample selections. Figure 20(a) shows how we adapt λ to the concept diversity

31

on the 300K large dataset. For concepts with low diversity values (≤ 1), we set λ = 0.5. For more

diverse concepts, we reduce λ as diversity increases. However, we cannot reduce λ indefinitely, and

ignore usefulness of samples near the hyperplane. Therefore, when the diversity value is greater than

3.5, we set λ = 0.2. We plotted the precision results for queries with diverse concepts in Figure 20(b).

The dashed curve plots the precision results using λ fixed at 0.5. The solid curve is for the case where

λ adapts to the diversity.

At higher iterations, using an adaptive λ improves the precision rate by about 10%. The improve-

ment is not significant for the 2nd iteration since the learner still has insufficient labeled images to

construct a good classifier. A qualitative observation reported by users is that when λ is adaptive, the

variety of images is significantly better, in both the sample pool and the results set. Thus, our approach

of adjusting λ according to the concept’s diversity proves to be both simple and effective.

6.7 Evaluation Summary

Our experiments have provided us information to answer the five questions posed in the beginning of

the section.

1. Active learning outperforms passive learning methods. The gain of active learning becomes more

significant when complexity increases.

2. Active learning outperforms traditional relevance feedback schemes by significant margins. This

is hardly a surprise, since active learning maximizes information gain when it selects a sample to

perform pool-query.

3. The angle-diversity sampling method, which strikes a good balance between uncertainty and

diversity, works most effectively and efficiently among the sampling methods.

4. When concept complexity increases beyond certain level (e.g., when a target concept is scarce

or poorly isolated), the effectiveness of active learning can suffer from severe degradation. We

have shown that by taking advantage of keyword profiling (similar to the way that all relational

databases perform query optimization based on some profiling techniques), SVMCD
Active can perform

concept-dependent active learning by disambiguating either keyword semantics or perceptual

features. Improving concept learnability assures the algorithm’s scalability with respect to concept

complexity.

5. Concept-dependent active learning can also adapt its diversity parameter to behave exploratively

when the target concept is scattered in the feature space.

32

7 Conclusions

We have demonstrated that active learning with support vector machines can provide a powerful tool

for searching image databases, outperforming key traditional query refinement schemes. SVMCD
Active not

only achieves consistently high accuracy on a wide variety of desired returned results, but also does

it quickly and maintains high precision when asked to deliver large quantities of images. Also, unlike

recent systems such as SIMPLIcity [62], it does not require an explicit semantic layer to perform well.

Our system takes advantage of the intuition that there can be considerable differences between the set

of images that we are already confident a user wishes to see, and the set of images that would most

informative for the user to label. By decoupling the notions of feedback and retrieval, and by using a

powerful classifier with active learning, we have demonstrated that SVMCD
Active can provide considerable

gains over other systems.

We have also proposed a multimodal, concept-dependent active learning scheme, which combines

keywords with images’ perceptual features in a synergistic way to perform image retrieval. In contrast to

traditional active learning methods, SVMCD
Active adjusts its learning process based on concept complexity:

it meticulously constructs the sample pool in order to ameliorate the query concept’s hit-rate and

isolation, and enhances the learnability of the query concept by adapting the sampling strategy to the

concept’s diversity.

8 Acknowledgements

The first author is supported by NSF grants IIS-0133802 (CAREER) and IIS-0219885 (ITR).

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases.
Proceedings of ACM SIGMOD, 1993.

[2] C. Bishop. Neural Networks for Pattern Recognition. Oxford, 1998.
[3] L. Breiman. Bagging predicators. Machine Learning, pages 123–140, 1996.
[4] L. Breiman. Arcing classifiers. The Annals of Statistics, pages 801–849, 1998.
[5] K. Brinker. Incorporating diversity in active learning with support vector machines. Proceedings of the

Twentieth International Conference on Machine Learning, pages 59–66, August 2003.
[6] C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge

Discovery, 2:121–167, 1998.
[7] C. Campbell, N. Cristianini, and A. Smola. Query learning with large margin classifiers. In Proceedings

of the Seventeenth International Conference on Machine Learning, 2000.
[8] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth. How to

use expert advice. Journal of ACM, 44(3):427–485, 1997.
[9] E. Chang, K. Goh, G. Sychay, and G. Wu. Content-based soft annotation for multimodal image retrieval

using bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology Special
Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, 13(1):26–38, 2003.

[10] E. Chang and B. Li. Mega — the maximizing expected generalization algorithm for learning complex
query concepts. ACM Transaction on Information Systems, December 2003.

[11] E. Y. Chang, B. Li, G. Wu, and K.-S. Goh. Statistical learning for effective visual information retrieval
(invited paper). IEEE International Conference on Image Processing (ICIP), pages 609–612, 2003.

33

[12] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with statistical models. Journal of Artificial
Intelligence Research, 4, 1996.

[13] I. Cox, J. Ghosn, M. Miller, T. Papathomas, and P. Yianilos. Introduces pichunter, the bayesian framework,
and describes a working system including measured user performance. hidden annotation in content based
image retrieval. In IEEE Workshop on Content-Based Access of Image & Video Libraries, pages 76–81,
June 1997.

[14] I. Cox, M. Miller, S. Omohundo, and P. Yianilos. Pichunter: Bayesian relevance feedback for image
retrieval. In 13th International Conference on Pattern Recognition, pages 361–369, August 1996.

[15] I. Cox, M. Miller, S. Omohundo, and P. Yianilos. Target testing and the pichunter bayesian multimedia
retrieval system. In Proceedings of the Forum on Research & Technology Advances in Digital Libraries,
pages 66–75, 1996.

[16] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos. The bayesian image retrieval
system, pichunter: Theory, implementation and psychological experiments. IEEE Transaction on Image
Processing, 2000.

[17] I. Dagan and S. Engelson. Committee-based sampling for training probabilistic classifiers. In Proceedings
of the Twelfth International Conference on Machine Learning, pages 150–157. Morgan Kaufmann, 1995.

[18] T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal
of Artifical Intelligence Research, 2, 1995.

[19] R. Duda, P. Hart, and D. G. Stork. Pattern Classification. Wiley, New York, 2 edition, 2001.
[20] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for

text categorization. In Proceedings of the Seventh International Conference on Information and Knowledge
Management. ACM Press, 1998.

[21] M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video content: the QBIC system. IEEE Computer,
28(9):23–32, 1995.

[22] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the Query by Committee
algorithm. Machine Learning, 28:133–168, 1997.

[23] P. Gosselin and M. Cord. Retin al: An active learning strategy for image category retrieval. IEEE ICIP,
2004.

[24] A. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin of learned ensembles. In
Proc. 15th National Conference on Artificial Intelligence (AAAI), 1998.

[25] A. Gupta and R. Jain. Visual information retrieval. Comm. of the ACM, 40(5):69–79, 1997.
[26] R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines: Estimating the bayes point in kernel

space. In International Joint Conference on Artificial Intelligence Workshop on Support Vector Machines,
pages 23–27, 1999.

[27] K. A. Hua, K. Vu, and J.-H. Oh. Sammatch: A flexible and efficient sampling-based image retrieval
technique for image databases. Proceedings of ACM Multimedia, November 1999.

[28] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Querying databases through multiple exam-
ples. VLDB, 1998.

[29] T. Jaakkola and H. Siegelmann. Active information retrieval. Advances in Neural Information processing
systems 14, 2001.

[30] G. James and T. Hastie. Error Coding and PaCT’s. 1997.
[31] T. Joachims. Text categorization with support vector machines. In Proceedings of the European Conference

on Machine Learning. Springer-Verlag, 1998.
[32] K. S. Jones and P. W. (Editors). Readings in Information Retrieval. Morgan Kaufman, July 1997.
[33] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT Press, 1994.
[34] W.-C. Lai, K. Goh, and E. Y. Chang. On scalability of active learning for formulating query concepts.

Workshop on Computer Vision Meets Databases (CVDB) in cooperation with ACM International Confer-
ence on Management of Data (SIGMOD), pages 11–18, 2004.

[35] D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In Proceedings of the Seventeenth
Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval,
pages 3–12. Springer-Verlag, 1994.

[36] C. Li, E. Chang, H. Garcia-Molina, and G. Wilderhold. Clindex: Approximate similarity queries in high-
dimensional spaces. IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(4), July 2002.

[37] M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearest neighbor classifiers. Mach.
Learn., 54(2):125–152, 2004.

[38] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, August 1996.

34

[39] A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In
Proceedings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann, 1998.

[40] T. Mitchell. Generalization as search. Artificial Intelligence, 28:203–226, 1982.
[41] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[42] M. Moreira and E. Mayoraz. Improving pairwise coupling classification with error correcting classifiers.

Proceedings of the Tenth European Conference on Machine Learning, April 1998.
[43] H. Nguyen and A. W. Smeulders. Active learning using pre-clustering. Proc. of the 21th Inter. Conf. on

Machine Learning, 2004.
[44] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. S. Huang. Supporting similarity queries in mars.

Proc. of ACM Conf. on Multimedia, 1997.
[45] M. Ortega, Y. Rui, K. Chakrabarti, A. Warshavsky, S. Mehrotra, and T. S. Huang. Supporting ranked

boolean similarity queries in mars. IEEE Transaction on Knowledge and Data Engineering, 10(6):905–925,
December 1999.

[46] M. Ortega-Binderberger and S. Mehrotra. Relevance Feedback in Multimedia Databases. in Handbook of
Video Databases: Design and Applications, Borko Furht and Oge Marquez eds., 2003.

[47] C. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. In Proceedings of
the International Conference on Computer Vision, 1998.

[48] K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query refinement for multimedia similarity retrieval in
mars. Proceedings of ACM Multimedia, November 1999.

[49] K. Porkaew, S. Mehrota, and M. Ortega. Query reformulation for content based multimedia retrieval in
mars. ICMCS, pages 747–751, 1999.

[50] N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction.
Proceedings of the Eighteenth International Conference on Machine Learning, pages 441–448, August 2001.

[51] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance feedback: A power tool in interactive
content-based image retrieval. IEEE Tran on Circuits and Systems for Video Technology, 8(5), Sept 1998.

[52] R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods. In Proceeding of the Fourteenth International Conference on Machine
Learning. Morgan Kaufmann, 1997.

[53] G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In Proceedings of
the Seventeenth International Conference on Machine Learning, 2000.

[54] H. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth Workshop on
Computational Learning Theory, pages 287–294. Morgan Kaufmann, 1992.

[55] J. Shawe-Taylor and N. Cristianini. Further results on the margin distribution. In Proceedings of the
Twelfth Annual Conference on Computational Learning Theory, pages 278–285, 1999.

[56] J. Smith and S.-F. Chang. Tools and techniques for color image retrieval. Volume 2670 of SPIE Proceedings,
pages 1630–1639, 1996.

[57] J. R. Smith and S.-F. Chang. Visualseek: A fully automated content-based image query system. ACM
Multimedia Conference, 1996.

[58] S. Tong and E. Chang. Support vector machine active learning for image retrieval. Proc. of ACM Int.
Conf. on Multimedia, pages 107–118, October 2001.

[59] S. Tong and D. Koller. Support vector machine active learning with applications to text classification.
Proceedings of the 17th International Conference on Machine Learning, pages 401–412, June 2000.

[60] V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Verlag, 1982.
[61] V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[62] J. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics-sensitive integrated matching for picture

libraries. ACM Multimedia Conference, 2000.
[63] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Wavelet-based image indexing techniques with

partial sketch retrieval capability. Proceedings of the 4th ADL, May 1997.
[64] H. Wu, H. Lu, and S. Ma. A practical svm-based algorithm for ordinal regression in image retri eval. ACM

International Conference on Multimedia, 2003.
[65] L. Wu, C. Faloutsos, K. Sycara, and T. R. Payne. Falcon: Feedback adaptive loop for content-based

retrieval. The 26th VLDB Conference, September 2000.
[66] X. S. Zhou and T. S. Huang. Comparing discriminating transformations and svm for learning during

multimedia retrieval. Proc. of ACM Conf. on Multimedia, pages 137–146, 2001.
[67] X. S. Zhou and T. S. Huang. Relevance feedback for image retrieval: a comprehensive review. ACM

Multimedia Systems Journal, special issue on CBIR, 2003.

35

