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It is often difficult to come up with a well-principled approach to the selection
of low-level features for characterizing images for content-based retrieval. This is
particularly true for medical imagery, where gross characterizations on the basis of
color and other global properties do not work. An alternative for medical imagery
consists of the “scattershot” approach that first extracts a large number of features
from an image and then reduces the dimensionality of the feature space by applying
a feature selection algorithm such as the Sequential Forward Selection method.

This contribution presents a better alternative to initial feature extraction for med-
ical imagery. The proposed new approach consists of (i) eliciting from the domain
experts (physicians, in our case) the perceptual categories they use to recognize dis-
eases in images; (ii) applying a suite of operators to the images to detect the presence
or the absence of these perceptual categories; (iii) ascertaining the discriminatory
power of the perceptual categories through statistical testing; and, finally, (iv) devis-
ing a retrieval algorithm using the perceptual categories. In this paper we will present
our proposed approach for the domain of high-resolution computed tomography
(HRCT) images of the lung. Our empirical evaluation shows that feature extraction
based on physicians’ perceptual categories achieves significantly higher retrieval
precision than the traditional scattershot approach. Moreover, the use of perceptually
based features gives the system the ability to provide an explanation for its retrieval
decisions, thereby instilling more confidence in its users. @ 2002 Elsevier Science (USA)
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1. INTRODUCTION

Identifying what features to extract and devising algorithms for doing so is a critical
step in the construction of any content-based image retrieval (CBIR) system. Important
questions that arise during this phase include what part of the image the features should
represent, and how one decides what features to extract in a disciplined way.

This problem of feature extraction and selection is not so acute for CBIR systems that
have focussed on general purpose imagery of outdoor scenes, especially if retrieval is with
respect to some global property of an image [1-8]. Such images tend to be rich in color
and texture and can often be characterized by global signatures based on such properties.
It should be mentioned that even in the domain of general purpose outdoor imagery, one
may need to carry out retrieval with respect to some highly localized attribute, as when you
are trying to find outdoor images with, say, a squirrel in them. To address this problem,
more recently researchers have attempted to describe images with texture, color, and shape
features extracted from local regions [9—14].

Medical CBIR systems are different from general purpose ones in several ways. For one,
the retrieval has to take place with respect to pathology bearing regions (PBR) that tend
to be highly localized. This means that retrieval on the basis of global signatures would
make no sense at all for medical databases. Additionally, the PBRs cannot be segmented
out automatically for many medical domains—which necessitates a physician-in-the-loop
approach for both training the CBIR system and for its actual use. Another factor that
makes medical CBIR very different from general purpose CBIR is that the ground truth is
available—in the form of disease categories for the images—and can be used for coming
up with performance numbers.

There have not been very many prior contributions to medical CBIR. A retrieval system
for megnetic resonance images (MRI) of the brain has been reported in [15, 16]. The main
image feature that is used for characterizing these images is the shape of the ventricular
region. In another system reported in [17], the images in the database consist of a single
tumor in the center without any background texture. The system presented in [18] aims at
aiding physicians in the diagnosis of lymphoproliferative disorders of the blood. Shape and
texture features are used to characterize the regions of interest delineated by the user. Cai
et al. describe in [19] a CBIR system for positron emission tomographic (PET) images of
the brain. In this case, a set of physiological features as well as text are used for retrieval. On
the other hand, in [20] a retrieval system for volumetric images of the brain is introduced. The
ASSERT system reported by us [21] is designed for high-resolution computed tomography
(HRCT) images of the lung where a rich set of textural features derived from the disease-
bearing regions are important for the characterization of the images. The physician is an
integral part of ASSERT, in the sense that it is the physician who delineates the PBRs when
an image is entered into the database and, also, in the query image.

Although the systems referenced above demonstrated experimentally the efficacy of the
features devised to characterize the given images, identifying these features was the outcome
of ingenuity, intuition and experimentation. This might not be a problem for the systems
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FIG. 1. An HRCT image of lung with the disease bronchiectasis which is highly localized. The two dark
arrows point to the pathology.

reported in [15-17], where shape alone is sufficient for retrieval, but it is an issue for the
more complex lung HRCT images (see, for example, Fig. 1). In this domain it is not clear at
first glance what features are needed. The approach we followed in [21, 22] was what may
be referred to as the scattershot approach. First an exhaustive set of low-level features to
characterize image pathology was extracted. Next, the dimensionality of the feature space
was reduced by searching for a representative subset using a greedy algorithm, such as the
Sequential Forward Selection search [23], with the aim of retaining only those features that
are maximally discriminatory with regard to the different diseases.

The work reported in this paper presents a better alternative to the scattershot approach.
Our new approach is based on the rationale that medical images should be characterized on
the basis of the visual patterns that the domain experts, in our case the expert physicians,
rely upon for disease detection. We refer to these patterns as the domain expert’s perceptual
categories.

The question then becomes as to how to go about eliciting the perceptual categories from
domain experts. Fortunately, in some domains, the domain of HRCT being one of them,
there has already been considerable cogitation among the domain experts about what the
relevant perceptual categories are. The scientific literature in these domains talks about
the specific patterns the physicians should look for in order to declare the presence or the
absence of various diseases.

To incorporate this domain knowledge in the feature extraction process, our first challenge
was to come up with low-level features that would detect the presence or the absence
of a perceptual category. We addressed this issue with a two-step approach: First, we
guessed what low-level features would be good for detecting each perceptual category;
and, second, we used the tools of MANOVA to ascertain the power of the chosen low-level
features to discriminate between the different perceptual categories. After determining what
perceptual categories are present in a PBR, we determine the disease of the PBR. Note that
ours is essentially a hierarchical approach to feature design: low-level features are used to
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describe the perceptual categories and then the perceptual categories are used to describe the
diseases.

An advantage of the hierarchical approach is that it makes it easier to decide what features
are needed to characterize the PBRs. The reason for this is that it is easier to come up with
features that are suitable to describe well-defined entities such as the perceptual categories
than to find features that solve the entire problem of disease classification. Furthermore, the
use of perceptually based features gives the system the ability to provide an explanation for
its retrieval decisions, thereby instilling more confidence in its users.

Taking into account the physician’s perceptual categories, this paper presents a new
approach to CBIR for medical image databases. We start by describing the various perceptual
categories used by expert physicians who specialize in the detection of emphysema-like
diseases in the HRCT images of the lung (Section 2). For each perceptual category, we
list the low-level features that can be expected to indicate the presence of that perceptual
category. This section is lengthy but necessary for a complete and accurate description of
the system; it is not critical though for understanding the rest of the paper.

In Section 3 we describe how we test with MANOVA whether or not a chosen set of
low-level features is actually measuring a perceptual category (Section 3). Subsequently in
the same section, we describe our use of the Bonferroni method of multiple comparisons
to give different weights to the low-level features in order to increase the measured “sep-
aration” between the various perceptual categories. These weights are then used to form
linear classifiers for retrieval. Query and matching processes for retrieving images based on
perceptual categories and disease categories are discussed in Section 4. Finally, in Section 5
we present retrieval results using the physicians’ perceptual categories and compare them
to the results using our earlier scattershot approach.

2. PHYSICIANS’ PERCEPTUAL CATEGORIES FOR RECOGNIZING
LUNG PATHOLOGY

Figure 2 shows the perceptual categories that physicians use for describing the visual
structure of a pathology bearing region (PBR) in an HRCT image of the lungs. The four
major categories are [24]: linear and reticular opacities, nodular opacities, high-density
areas, and low-density areas. These categories are major in the sense that, in the physician’s
mind, they correlate strongly with the various lung diseases. The leaf nodes of the tree in
Fig. 2 show the subcategories that the physicians actually use for labeling the PBRs. A PBR
may exhibit a pathology corresponding to the major category “high-density areas,” but the
actual visual structure inside the PBR would either be “ground glass” or “calcification,”
corresponding to the two leaf nodes of this major category in Fig. 2. The rest of this section
provides further details regarding the visual structures associated with these categories and
describes the low-level features designed to detect each category.

2.1. Linear and Reticular Opacities

These patterns consist of line-like structures that can either be straight and elongated, web-
like, or circular with dot-like protrusions. This major category encompasses the following
six subcategories:
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FIG. 2. Perceptual categories used by physicians for the domain of HRCT images of the lung.

1. Interlobular Septal Thickening

A lung consists of lobes, two in the left lung and three in the right lung, and each
lobe contains smaller structures called lobules, typically between 1 and 2 c¢cm in diam-
eter. Interlobular septal thickening refers to the thickening of the spaces between the
lobules. Shown at upper left in the cartoon representation in Fig. 3 is the pattern cor-
responding to interlobular septal thickening. The spaces enclosed by the white lines are
the lobules. Shown in Fig. 4 is an HRCT image in which the dark arrows point to a re-
gion that was marked by an expert physician as exhibiting interlobular septal thickening.
The visual pattern formed by the white “streaks” inside the physician-delineated PBR
in Fig. 4, and shown more vividly at the upper left in Fig. 3, is also referred to as a
reticular pattern in medical literature. For the purpose of characterization, such patterns
respond to the skeletonization of a PBR, followed by the extraction of the following pa-
rameters associated with the lobules enclosed by the white contours in the upper left in
Fig. 3:

e f/*": This is the number of lobules, which can be estimated by carrying out connectivity
analysis of the PBR pixels after they are skeletonized. Figure 4b shows a skeletonization
of the PBR outlined by a physician in the HRCT image on the left. In Fig. 4c, we show the
lobule pixels enclosed by the skeleton branches in Fig. 4b. These lobule pixels are obtained
by taking a complement of the skeletal image, followed by shrink and grow operations,
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FIG. 3. Cartoon representation of the perceptual categories that fall under the label “linear and reticular
opacities.”

where the grow operation is performed with a constraint on the homogeneity of the pixel
gray levels. A simple count of the regions shown in Fig. 4c yields f/*".

e f5*: This is the average area of a lobule. Extraction of this parameter is a simple
extension of the procedure for extracting f;*". All that needs to be done is to count the
number of pixels in each lobule and find the average value of this number for all the lobules.

e f3*": This is the average difference between the lobule gray levels and the gray levels
of the white boundaries enclosing the lobules. The value of this parameter can be calculated
by a straightforward extension of the algorithm for extracting f;".

2. Parenchymal Bands

These are long and thick white lines in the images, caused by the presence of high-
attenuation tissues in the lung that often touch the boundary of the lung. They are shown at
the lower right in the simplified rendition of the perceptual categories in Fig. 3. An HRCT
example of such patterns is shown in Fig. 5a where the two arrows point to parenchymal
bands in a physician-outlined PBR. To extract such patterns, we first apply to the PBR

FIG.4. Thetwo arrows in (a) point to interlobular septal thickening inside a physician-delineated PBR. Shown
in (b) is an expanded view of the PBR after it is skeletonized. Shown in (c) are the lobules extracted. The values
of the characterizing parameters for the example shown here are f*" =28, f;*"=79.78, and f;*" =57.98.
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FIG. 5. The two arrows shown in (a) point to parenchymal bands inside a physician-delineated PBR, which,
in this case, consists of an entire lung. Shown in (b) is the output obtained after lung-region extraction and an
application of a high threshold. The bands, shown in (c), are obtained by rejecting those components in (b) that
do not touch the lung boundary. The values of the characterizing parameters for the example shown here are
f*% =3807.00 and f/** =0.01.

our lung boundary extraction algorithm described in [21].! Simple thresholding of the
region interior to the bounding contour yields parenchymal bands and other artifact objects
(see Fig. 5b). Nonband pixels are discarded by carrying out a connectivity analysis of the
thresholded object and rejecting those that are not touching the lung boundary, yielding just
the bands as shown in Fig. 5c. These bands are then characterized by

e f["*: The average area as obtained by simply counting the number of pixels in the
bands shown in Fig. 5c.
e f;*%: The average form factor given by

4 x Area

PAR
= > 1
2 Perimeter? M

where the Area and the Perimeter are calculated for each band separately.

3. Bronchiectasis

Bronchi are air-filled passages of the lung that, due to their low attenuation, show up
as dark regions. Bronchiectasis means enlargement of the bronchi, as shown by the rendi-
tion at the upper right in Fig. 3. The arrows in Fig. 6a point to such structures. The dark
region inside a bronchus is also referred to as a lumen. The enlargement of the bronchi
is often accompanied by a thickening of the walls of the bronchi that show up as white
contours surrounding the lumen. These patterns are best extracted by double threshold-
ing [25] the physician-outlined PBRs. For the PBR of the example shown in Fig. 6a, the
double thresholding yields the lumens and other nonlumen artifacts shown in Fig. 6b. The
nonlumen artifacts are rejected by using the criterion that only the lumens are enclosed by
the high-attenuation bronchial walls. These walls are detected by growing the boundaries
of the lumens until no further high-valued pixels can be included. Shown in Fig. 6¢ are
the bronchial walls extracted in this manner. The regions enclosed by these walls are the

! Note that since parenchymal bands usually touch the lung boundary, any PBR outlined by a physician that
pertains to this perceptual category will also include at least a portion of the lung boundary. In many cases, it
includes an entire lung, as shown by the example in Fig. 5a.



126 SHYU ET AL.

FIG. 6. The two arrows shown in (a) point to bronchiectasis inside a physician-delineated PBR. The output
obtained when a dual threshold is applied to just the PBR is shown in (b). The nonlumen artifacts in (b) are
rejected in the manner described in the text and the output obtained is as shown in (c). The values of the charac-
terizing parameters for the example shown here are f*0 =27.00, %0 =3.82, PR =54.48, [ =0.334, and
SfERO =131.

lumens; for the example under consideration, these are shown in Fig. 6¢. The lumens are
characterized by:

e f/%: The number of lumens. This parameter is obtained simply by counting the
completely-enclosed low-attenuation regions in an output such as shown in Fig. 6c.

e f7%: The average thickness of the bronchial walls surrounding the lumens. These are
obtained trivially from the output like the one shown in Fig. 6¢c.

e f7%°: The average area of the lumens obtained trivially from an output such as shown
in Fig. 6c¢.

e f/%°: The average ratio of the lumen radius to the thickness of the bronchial walls.

e f&%: The grey difference between the walls and the lumens.

4. Tree-in-Bud

In some patients, the small airways, also called bronchioles, may be dilated and filled with
pus, mucus or inflammatory exudate, leading to the appearance of high X-ray attenuation
(meaning, white) clusters of pixels that form “spotty” regions, as rendered at the lower left
in Fig. 3. The arrows in the HRCT image of Fig. 7 point to such a region. The gray levels for
those “spotty” tissues are high and close to the grey levels for the bone. Therefore, they can
be extracted by applying a high threshold to a PBR. For the PBR of the example shown in
Fig. 7a, shown in 7b is just the PBR after a threshold is applied to it.> Since the application
of this threshold yields a single connected component for the spotty regions, this category
can be characterized by

o f[”: The area of the connected component. This parameter is obtained simply by
counting the number of pixels in an output such as shown in Fig. 7b.

e f)”: The average difference between the gray levels inside the connected component
and those outside in the PBR.

e f3": The form factor of the connected component as given by Eq. (1).

2 The high threshold used for this purpose is chosen automatically for each image by making it equal to the
average gray levels in the spinal-cord region of an HRCT image. This region, roughly in the same portion of each
image, consists of the highest gray levels and therefore can be identified by a straightforward histogram analysis.
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(®)

FIG. 7. The arrows shown in (a) point to the tree-in-buds perceptual category inside a physician-delineated
PBR. Shown in (b) is the output obtained when the PBR is subject to a high threshold in the manner discussed in
the text. The values of the characterizing parameters for the example shown here are f"* =756, f,"® =134, and
fi"®=0.10.

5. Bronchial Wall Thickening

As the name implies, this pattern corresponds to the thickening of the walls of the bronchi.
A rendition of this perceptual category is shown at the middle right in Fig. 3. When a patient
exhibits this condition, the artery that adjoins a bronchus shows up as a smaller structure,
giving the appearance to the combination of the bronchus and the artery as a “signet ring,”
in which the ring is made of the dilated bronchus and the “diamond” of the adjoining
artery. The patterns shown in the middle right of Fig. 3 are the signet-ring patterns. The
two arrows in Fig. 8a point to bronchial wall thickening. This condition in a patient is
also known as peribronchovascular interstitial thickening. These patterns are detected and
characterized in a manner identical to what was used for bronchiectasis. Therefore, the
same five parameters that were listed for bronchiectasis earlier are used for characterizing
bronchial wall thickening. Of course, the values taken on by some of those parameters—for
example, the parameters f;*°, f7*°, and f{*°—will be different for the current case. Shown
in Fig. 8b is an enlarged view of the PBR after it is taken through the processing steps
mentioned previously for the case of bronchiectasis.

(®)

FIG. 8. The arrows shown in (a) point to bronchial wall thickening inside a physician-delineated PBR. Shown
in (b) are the visual structures corresponding to this perceptual category. These are obtained in a manner similar
to that for the bronchiectasis perceptual category. The values of the characterizing parameters for the example
shown here are f*0 =9.00, fPR° =3.82, f#*0 =36.44, £ =1.51, and f5%° =146.
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FIG. 9. The arrows shown in (a) point to mucus plugging inside a physician-delineated PBR. Shown in (b)
are the visual structures corresponding to this category. These are obtained in a manner that is similar to that for
tree-in-buds. The values of the characterizing parameters for the example shown are fV* =598, fM'"=0.18,
and f}'V" =5.0.

6. Mucus Plugging

When dilated bronchi become filled with mucus, pus or inflammatory exudate, they show
up as large clusters of white pixels (on a scale larger than is the case with the individual
clusters in the tree-in-bud pattern). Also, sometimes these clusters exhibit linear and/or
branching structures, as shown in the middle left in Fig. 3. It is almost always the case
that one finds bronchial structures in the vicinity of such patterns. Therefore, the presence
of bronchial structures can be used as supporting evidence for this pattern. These patterns
are detected in a manner identical to that for tree-in-bud, except for the difference that the
output obtained after applying a high threshold to the PBR is not now a single connected
component. Also, the multiple components obtained are analyzed for the presence of a
bronchial structure in the vicinity of each connected blob of high gray levels. For the
example of Fig. 9a in which the two arrows point to mucus plugging, the output obtained
by applying a high threshold® to the PBR is shown in 9b. The high pixels that surround
the dark holes constitute the bronchial structures. Therefore, in this case, the rest of the
connected components are taken as constituting mucus plugging. This perceptual category
is characterized by the following parameters:

o f"": Average area of the mucus-plugging components.

e /"1 Average form factor of the mucus-plugging components, defined as before for
parenchymal bands.

e f3": Number of bronchial structures in the PBR.

2.2. Nodular Opacities

The patterns that fall under this major category consist of nodules of different shapes,
sizes, spatial distributions, and at different states of agglomeration, the differences captured
by the following three subcategories:

3 The value of this threshold is chosen in a manner identical to that for the tree-in-bud pattern.
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(a) (b)

FIG.10. Shownin (a)is aphysician-delineated PBR containing small nodules. The PBR after it is thresholded
is shown in (b). The nonnodule artifacts are removed on the basis of the roundness property and the resulting
nodules are shown in (c). The values of the characterizing parameters for this PBR are f*¢ =75, £ =1.04,
SINC =1717.36, f{N° =8.90, fiN° =3.60, and f;¥° =[48,25,1,0,0,0].

1. Small Nodules

These are roughly round and less than one centimeter in diameter. Their distribution
carries diagnostic information. When the distribution is random, then the nodules appear
widely and evenly throughout the lung as shown in Fig. 10. Distributions become nonuni-
form when nodules attach themselves to the boundaries of the lungs or to the fissures. The
gray values associated with nodular opacities carry important information with regard to
whether the tissue is benign or malignant. HRCT images that show this type of evidence
can be further categorized on the basis of the size and locational distributions associated
with the nodular opacities. Patterns corresponding to this perceptual category can be ex-
tracted by first applying a high threshold to the PBR, followed by the measurement of
“roundness” property using the formula shown below, and by discarding nonnodule objects
on the basis of roundness. For each PBR, the threshold is selected automatically by using
Otsu’s threshold selection algorithm [26], which in the present context was discussed in
some detail in [21]. Shown in Fig. 10a is a physician-delineated PBR for this example. The
output obtained by applying a threshold to the PBR is shown in Fig. 10b. The nonnodule
objects in this output are rejected on the basis of the value of “roundness” parameter defined
below. Only those objects are accepted whose “roundness” parameter value is between 0.9
and 1.1. Shown in Fig. 10c are the nodule pixels extracted in this manner for the PBR of
Fig. 10a. This perceptual category is characterized by the following parameters:

e f¥: Number of small nodules. This parameter is obtained by counting the number of
labeled regions from Fig. 10c.
e f5": Average roundness of small nodules. The roundness is given by

o 4 x Area 2)
27 7 % Diameter?

where the Area and the Diameter are calculated for each extracted small nodule.

e f3": Average gray level of small nodules.

e f°: Average nearest-neighbor (NN) distance between the nodule centers [27].
e f3'°: Standard deviation of NN distance.
e f2V°: Histogram of NN distances. We use six bins for this histogram—a number arrived

at by trial and error. Each bin spans a distance of five pixels.
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FIG. 11. The arrows in (a) point to conglomerate nodules inside a physician-delineated PBR. The PBR
is thresholded and the nonconglomerate nodules are rejected on the basis of roundness. (b) The values of the
characterizing parameters for this example are f%¥ =4.0, ff°V=0.34.

2. Conglomerate Nodules

Large nodules usually have irregular shape, whose “diameter” exceeds 1 cm. Sometimes
large nodules agglomerate into large masses, as shown in Fig. 11. The conglomerate nodules
are extracted with a lower threshold on the roundness parameter. In other words, the value
of the roundness threshold is keyed to the size of the object extracted after thresholding.
Shown in Fig. 11ais a physician-delineated PBR containing this perceptual category. With
processing similar to that for the case of small nodules but with relaxed conditions on the
roundness property, the output obtained for the PBR is as shown in Fig. 11b. The regions
thus extracted are characterized by the following parameters:

e f°¥: The number of large nodules. Physicians consider a nodule large if its diameter
exceeds six pixels.
e f5°¥: The fraction of PBR occupied by the conglomerate nodules.

3. Cavitary Nodules

For patients suffering from pneumonia, the large nodules can exhibit holes inside them.
Those holes correspond to the dead lung tissue. Figure 12a shows this perceptual category

FIG.12. Shownin (a)is a physician-delineated PBR containing a cavitary nodule. The PBR after it is subject
to the extraction of this nodule is shown in (b). The values of the characterizing parameters for this example are
[V =419.57, f4=0.81, fA=123.
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FIG.13. Shownin (a)isaphysician-delineated PBR for the case of ground glass. Shown in (b) is the histogram
for the pixels in the PBR. The values of the characterizing parameters for this example are f°° =0.62, f,’¢ =49,
fP6=162.98, and f79=113.64.

inside a physician-delineated PBR. Since such patterns can be extracted in a manner identical
to that for bronchial structures, we do not describe the feature extraction methods here. For
the example here, Fig. 12b shows the PBR after the extraction of the pattern corresponding
to this perceptual category. Such patterns are characterized by:

e f™: Average area of cavities.
e f5": Fraction of the PBR occupied by the cavities.
o f{": Average gray level difference between the walls surrounding the cavities and the

cavities themselves.

2.3. High-Density Areas

For some lung diseases, an entire lung may exhibit a generally elevated brightness level in
comparison to a normal lung. When that happens, the elevated gray level in itself becomes
a visual characterization of the disease, a characterization that goes under the label “high-
density areas.” There are two subcategories to consider for this case:

1. Ground-Glass Opacities

Fig. 13a shows a PBR that exhibits ground-glass opacity. Note that the generally elevated
brightness of the lung does not obscure the underlying vessels. The vessels can be seen
clearly in the lungs even though the tissues everywhere are characterized by a higher level
of attenuation. Algorithms capable of separating the normal tissues from the ground-glass
tissues make use of the fact that gray-level histogram for the latter case is bimodal, whereas
it is primarily unimodal for the normal tissues.* The threshold corresponding to the dip

4 For some images, this histogram may be multi-modal, but with a marked and easily identifiable dip that
separates the normal-tissue pixels from the diseased pixels. This threshold corresponding to this dip can again be
extracted by Otsu’s algorithm.
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FIG. 14. Shown in (a) is a physician-delineated PBR exhibiting calcification. The PBR after it is subject to
thresholding operations is shown in (b). The values of the characterizing parameters for this example are f“* =11,
[k =557.72, f{* =170.16, and f*F=0.28.

between the two humps of the histogram is detected by applying Otsu’s algorithm [26]
to the histogram. Figure 13b shows the histogram for the example here. The following
parameters are extracted from such histograms:

e f°: Ratio of the number of pixels beyond the threshold that separates the two major
humps of the histogram to the total number of pixels in the PBR.

e f7°: Average gray-level difference between the pixels corresponding to the two major
humps of the histogram.

e f7°: Average gray level for the pixels corresponding to the “higher” hump of the
histogram.

e fJ° Average gray level of the pixels in the “lower” hump of the histogram.

2. Calctfication

The overall visual effect in an HRCT image with calcification is that of marked increase
in density, similar to bone. The dark arrow in Fig. 14a points to calcified patterns. These
patterns are detected in a manner identical to that for extracting regions corresponding to
the mucus plugging perceptual category. Figure 14(b) shows the PBR after those processing
steps. These patterns can be characterized by the following parameters:

**: Number of connected components.

51 Average area of the connected components.

31 Average grey level of the connected components.

+**: The fraction of the PBR area occupied by the connected components.

2.4. Low-Density Areas

Most of the previously mentioned perceptual categories consist predominantly of in-
creased attenuation pixels (meaning pixels of higher gray levels). The defining character-
istics of the category we will describe in this section are set by pixels whose gray levels
are darker than the average—that is, pixels for tissues with low attenuation. There are four
subcategories to consider under this category:
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()
FIG. 15. Shown in (a) is a physician-delineated PBR for the case of centrilobular emphysema. The values
of the characterizing parameters for this example are: f™" =65.38, ffM" =1.32, ff™" =0. Shown in (b) is a

physician-delineated PBR for the case of paraseptal emphysema. The values of the characterizing parameters for
this example are: f™F =103.02, ff*F =0.76, f* =3.

1. Emphysema

A PBR exhibits the pattern emphysema if the gray levels are significantly lower compared
to what a physician expects to see in a normal healthy lung. These reduced gray level areas
may occupy a part of a lung or an entire lung region, but are likely to be found more
frequently in the upper lobes of a lung. Also, when the disease becomes severe, these areas
may join together to form a large region of low attenuation. The physician-delineated PBR
in Fig. 15a shows centrilobular emphysema and the one in Fig. 15b paraseptal emphysema.
While centrilobular emphysema manifests itself in the form of a large number of areas
with significantly low gray levels inside the lung regions; for paraseptal emphysema the
low gray-level regions occur adjacent to the boundaries of the lung or in the vicinity of the
fissures. Since there are no special visual patterns associated with centrilobular emphysema
except the low-gray levels and the homogeneous texture properties, we characterize such a
PBR by the following measurements:

e f["": Average gray level of the PBR.
e f7*": Homogeneity from the cooccurrence matrices [28].
e f3: The number of low-gray-level regions adjacent to the lung boundary.

2. Lung Cysts

These are thin-walled, well-defined, and circumscribed lesions containing air. The PBR
shown in Fig. 16a exhibits the visual form corresponding to lung cysts. These forms are
differentiated from emphysema by their discernible walls. These patterns are detected in a
manner identical to what was used for bronchiectasis since both categories have patterns
consisting of dark regions surrounded by white walls. These patterns are characterized by:

f7%: Number of individual low gray level regions.

% Average area of the low gray level regions.

5 '°: Average grey level of the low gray level regions.

% Average grey level for the walls.

Jf5%: The fraction of the PBR area occupied by the low gray level regions.
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FIG. 16. Shown in (a) is a physician-delineated PBR for the case of cysts. The output is shown in (b). The
values of the characterizing parameters for this example are £ =28, [ =207.64, £ =55.65, £ =139.0,
and £ =0.31.

3. Mosaic Perfusion

The visual form here is very similar to that for the case of ground glass, except that
the relatively elevated pixels in this case do not occupy a whole lung, as shown by the
physician-delineated PBR in Fig. 17. Such patterns are extracted by the same histogram
based technique that was described for the case of ground glass and characterized by the
same set of parameters listed there.

4. Honeycombing

As the name implies, the visual form for the honeycombing pattern consists of small
cells, corresponding to air-filled regions in the lung, separated by shared walls, as shown
by the example in Fig. 18. The shared walls differentiate this pattern from lung cysts.

Hritggam - B2

Fhurtagen

(a)

FIG. 17. Shown in (a) is a physician-delineated PBR for the case of mosaic perfusion. Shown in (b) is the
histogram for the pixels in the PBR. The values of the characterizing parameters for this example are f}"%5 =0.31,
fH0s =42, fMOS =195.30, and £} =153.83.
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FIG. 18. Shown in (a) is a physician-delineated PBR for the case of honeycombing. The output is shown in
(b). The values of the characterizing parameters for this example are f/"°V =19, ff/°N=197.53, f{N =87.33,
SfHON =171.73.

Honeycombing is detected in the same manner as interlobular septal thickening. The differ-
ence between the two is the grey levels of the lobules; they are darker for honeycombing.
Figure 18b shows the extracted honeycombing structure from the PBR delineated in Fig. 18a.
The parameters used for characterizing this perceptual category are the same as for inter-
lobular septal thickening.

2.5. Optimal Threshold Determination

The discussion so far has identified a set of gray-level thresholds that are used to extract
the features corresponding to the relevant perceptual categories. How to set these thresholds
is obviously an important issue in the design of a CBIR system. Each threshold is chosen
by applying Otsu’s algorithm [26] to the relevant histograms. This algorithm is based on
the assumption that a histogram is a mixture of two Gaussian classes and that the optimum
threshold that separates them is the ratio of between-class variance and the sum of within-
class variances. This approach allows each threshold to adapt to each image separately.

3. ARE THE LOW-LEVEL FEATURES MEASURING THE PHYSICIANS’
PERCEPTUAL CATEGORIES?

We have used multivariate analysis of variance (MANOVA) [29] to determine whether
or not the low-level features we use for determining the presence or the absence of the
perceptual categories are doing their job. MANOVA is used to compute the means of the
low-level features separately for the different perceptual categories; the between-category
differences of these means; and a measure of the power of the low-level features to discrim-
inate between the different perceptual categories. To assess the normality assumption for
the multivariate feature vectors, we applied the chi-squared plot test which is discussed in
detail in Appendix A.

3.1. Data Collection and Sample Grouping

To collect the data, we asked an expert physician participating in our research program
to mark our HRCT database images with regard to the presence or the absence of the
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TABLE 1
Distributions of Lung Diseases and Perceptual Categories in Our Database

Lung Diseases

PC ASP BOOP BRO CLE DIP EG IPF MET PAN PAR PCP POL SAR Total

SEP 4 64 0 12 13 0 336 0 0 0 0 1 30 478
PAR* 0 1 0 4 0 0 8 0 1 0 0 0 0 14
BRO 1 0 232 6 0 0 1 0 0 0 0 0 0 234
TIB 1 0 32 0 0 0 2 0 0 0 0 13 31 79
BWT 3 1 121 17 0 0 5 0 0 0 0 0 73 220
MUP 0 0 23 0 0 0 0 0 0 0 0 0 0 23
SNO 5 54 6 7 3 0 44 0 0 0 16 22 62 231
CAV* 2 0 0 0 0 0 0 0 0 0 0 0 0 2
CON 33 26 0 1 0 0 5 0 0 0 0 0 14 78
GG 26 71 27 1 37 0 320 0 0 0 59 29 105 728
CAL* 0 0 0 0 0 0 0 8 0 0 0 0 0 8
EMP 0 0 0 654 4 0 10 0 60 63 0 0 0 788
MOS 0 0 20 0 0 0 0 0 0 0 0 0 0 25
CYS 0 0 0 1 0 56 0 0 0 0 0 0 0 57
HON 0 1 0 0 22 0 177 0 0 0 0 0 1 199
Total 34 71 233 656 37 56 383 8 60 63 60 29 143 1873

* Perceptual category with small sample size. (Unit: number of marked pathology-bearing regions.)

various perceptual categories. A special graphical interface tool was devised for this purpose.
Using this tool, for each database image the physician could check as many of perceptual
categories as applicable to the PBR’s in that image. Table 1 shows the distribution of
the PBR’s having both a particular perceptual category and a particular disease. The top
row lists the lung diseases and the left column lists the perceptual categories. Tables 6
and 7 of Appendix C show full definitions of the abbreviations used in Table 1. It is
noteworthy that while different diseases give rise to different perceptual categories, the
same perceptual category can be seen in the PBR’s for different diseases. For example,
the perceptual category SEP (interlobular septal thickening) is exhibited by the diseases
CLE (centrilobular emphysema), BOOP (bronchiolitis obliterans organizing pneumonia),
DIP (desquamitive interstitial pneumonitis), IPF (idiopathic pulmonary fibrosis), and SAR
(scleroderma).

Excluding those perceptual categories which have small population sizes (marked with
a star in Table 1), the PBRs labeled by a physician are grouped into twelve perceptual
categories, corresponding to the terminal leaves of the tree shown in Fig. 2. We will use
the following symbols to refer to these 12 categories: (Gp), (Gpro)s (Grip)s (Gawr)s (Gawp),
(Gsx0)s (Geon)s (Gaa)s (Grup), (Gos), (Gexs), and (G yoy). To keep the MANOVA part of the
discussion general, we will use N to denote the number of perceptual categories.

For the purpose of applying the tools of MANOVA, each observation consists of a vector
of p low-level feature measurements from a PBR. Note that the p low-level features for
category A will, in general, be different from the p low-level features for category B.
Additionally, the value of p for category A is allowed to be different from the value of
p for category B. This point is important because the categories do not reside in the same
p-dimensional feature space. The presence or absence of a particular perceptual category
is decided in its own p-dimensional feature space.
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3.2. Sample Grouping and Hypothesis Testing

Although MANOVA could be used to analyze the data for all the categories simulta-
neously (in order to determine whether or not sufficient discrimination is provided by the
features), we chose to perform pairwise hypothesis tests to assess whether the low-level
features are able to discriminate each perceptual category against each of the remaining
categories. The reason for this stems from the fact that multiple perceptual categories char-
acterize each disease and one needs to find all the categories present in a PBR before
determining its disease. Furthermore, fewer features are needed to discriminate among two
classes than many classes [30]. In what follows we describe the methodology followed for
the statistical testing in more detail.

Suppose that we want to ascertain whether or not the features designated to characterize
category g are capable of discriminating between perceptual categories g and r. Let N, and
N, be the number of observations, or sample vectors, for categories g and r respectively and
let p, be the number of the low-level features for category g. For this two-class problem,
we can then test the hypothesis that the p, features, all considered equally important at this
stage of analysis, are able to differentiate between categories g and r. This hypothesis test
would, of course, need to be carried out separately for each category. For the remaining
discussion here, we will use X, ; to denote the kth observation in category g, and X, ; for
the kth observation in category r.>

The mean sample vector for category g is denoted X,. We will use X to denote the mean
of the samples of both categories g and r. Both the means X, and X are defined in the
p-dimensional space corresponding to the perceptual category g.

In the p,-dimensional space used for category g, it is possible to express an observation
vector X, x by

Xop =X+ X, = X)+ Xgx — Xp)- 3)

This decomposition highlights the contribution made by the deviation of the observation
vector from its own category mean and the difference between a category mean and the entire
population mean. The latter will be denoted by 7, = (X_g —X). In the same p o-dimensional
space, the expression for the overall covariance of the data can now be expressed as

N;
T= > Y Xix—XXix —X)'
ie{g,r} k=1
N;
= > NX-XX-X"+ > ) Xk — XX - X)"
iefg.r} ie{g.r} k=1
T=B+W.

This shows that the overall data variance T consists of two parts: B, the between category
variance, which has dg =1 degree of freedom for the two-class problem we are analyzing
here; and W, the within-category residual variance with dy = 3 \ N; — 2 degrees of
freedom.

To determine whether or not there exists category discrimination information in the
low-level features used to measure the presence or absence of a category in a PBR, we can

ie{g,r

> We use bold symbols for vectors and matrices.
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perform the following likelihood ratio test. We construct a hypothesis Hy : 7, = T, meaning
that the mean for category g is the same as the mean for all other categories lumped together
within a chosen confidence interval in the p-dimensional space specific to category g. 7,
denotes X, — X. To test the Hy hypothesis, we first compute Wilks’s lambda A*,

« Al

A T 4
B+ W]| @

where | - | is the determinant of the argument matrix. The exact distribution of A* can be
obtained from any standard published table if the size of the category vector is known. A
criterion derived from the applicable distribution can then be compared against a threshold
for either accepting or rejecting the hypothesis Hy at a chosen confidence level. For exam-
ple, when each observation vector consists of two low-level features, meaning p =2, the
following F-test criterion obtained from the applicable distribution,

() ()

can be compared to a threshold,

F > Fy, q,(a), (6)

in order to reject hypothesis Hy at confidence level (1 — «). Fy, 4, () is the upper 100a %
of the F-distribution with dp and dy degrees of freedom.

In this manner, we can determine whether or not a given p-dimensional feature set can
discriminate a category vector from the rest of the data. This pairwise hypothesis test is
carried out separately for each category.

A problem with our methodology is that discriminating between two perceptual categories
isnota symmetric procedure, since different features will be considered when discriminating
category A from B and B from A. A way to resolve this issue would be to consider the low
level features for all the categories simultaneously and from these to select the ones that
give us the best discrimination between A and B (using a feature selection algorithm such
as sequential forward selection).

3.3. Weighting the Mean Differences

If the inequality of Eq. (6) holds for the aforementioned pairwise hypothesis testing for
each of the categories, we can conclude that, within the confidence interval used, the chosen
low-level features are able to detect the respective perceptual categories. But the following
questions remain: What is the relative contribution of each of the low-level features to the
differences in the means of the different categories? Could knowledge of these relative
contributions be used to weight the image features differently? This section addresses these
two questions.

To assess the relative weights to be assigned to the individual low-level features, we used
the Bonferroni method of multiple comparisons [29]. For the sake of explanation, assume
that we have two perceptual categories: g and r. Moreover, both the categories g and r
are characterized by the features designated for category g. We will use p, to represent
the number of image features designated for the category g. Assume that this feature set
accepts the hypothesis Hj at confidence level 1 — «.
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To ascertain the relative importance to be assigned to each g feature, we compute the
differences in the means of the feature values for the pair (g, 7). For each such pair, we also
calculate the uncertainty associated with the mean difference. It goes without saying that
the larger the uncertainty in relation to the mean difference, the poorer the feature. These
mean differences will then be utilized to set a weight vector for the feature.

For pairwise comparisons, the Bonferroni approach can be used to construct uncer-
tainty intervals for the individual feature components of the difference vector X, — X, Let
N; = N, + N, be the total number of sample vectors available. Let X } denote the i element
of the feature vector for category j. Under the condition that the confidence level is at least
(1 — ), we can obtain the following interval for the uncertainty in the difference of the
mean values of the ith feature,

- — w;; 1 1
Li, R)=X —Xidty o Yo —+— ), 7
(Li, R) =X}, - X] Mz(oz>\/Nt_2(Ng+Nr) (7)
where o' =% and w;; is the ith diagonal element of W (defined in Section 3.2) and

2pg
ty, —2(e’) is the student r-distribution with N, —2 degrees of freedom. The size of this

uncertainty interval is given by R; — L;. Evidently, when the second term in Eq. (7) is zero,
there is no uncertainty in the difference of the mean values for feature i since L; is equal
to R;. By the same token, when the second term in Eq. (7) is greater than the first, the
uncertainty dominates, making such a feature unreliable. The weight given to such a feature
is one. We only assign more weight to a feature if the second term of Eq. (7) is less than the
first term for that feature.

The quality of the ith feature for discriminating between the categories g and r can now
be measured by the following & factor:

X, — X R —L;
R —L;
2

if 0 <

< X’g—X’

r

®)

i
hg,r -

1 otherwise

These quality factors can be computed for every feature for the pair of g and r. Subsequently,
the quality factors are grouped to form a quality vector of mean differences for the features
that can discriminate g from r:

h,=[h!, 02, ... W] 9)

&r>g.r’

This quality vector is then used to weight the difference of the mean vectors from two
populations, g and r. The weighted mean difference vector can be obtained,

.=, (% X)), (10)

where I is an identity matrix with dimension p, x p,. In general, for each perceptual
category j, a set of Ng — 1 weighted mean difference vectors d .k are computed (1 < j,
k<Ng, j#k).

4. QUERY AND MATCHING

With regard to its use by a physician, we want our system to retrieve the most visually
similar database images that have the same disease label that an expert physician would
assign to the query image. For reasons that will be explained in the next section, the retrieval
requires a combination of a classifier and a voting scheme.
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FIG. 19. To ascertain the disease label of a new PBR, the low-level features are first mapped to perceptual
categories. It is possible for a PBR to be associated with multiple perceptual categories. The perceptual categories
for a given PBR are then mapped to the disease label.

An issue of singular importance in the design of our retrieval engine is that a PBR can
fall into multiple perceptual categories at the same time. In Appendix B Table 4 shows the
co-occurrence frequencies of the perceptual categories. Each entry in the table, denoted
s for the entry in jth row and kth column, shows the number of PBRs that exhibited
the row and column perceptual category labels at the same time. For example, s, 4 = 122.
This means that 122 PBRs simultaneously exhibited the perceptual categories BRO and
BWT. For obvious reasons, s; x = s, j. Since each PBR has only one disease diagnosis, the
cooccurrence frequency s; ; also tells us how often the two perceptual categories result in
one disease diagnosis.

The fact that a PBR can possess multiple perceptual categories dictates the approach
shown in Fig. 19 for ascertaining the disease label associated with a PBR. From all the
feature measurements on a PBR, we must first determine all the perceptual category labels
that apply to the PBR. We must then determine how the perceptual category labels map into
a disease label.

In the rest of this section, we will first discuss how we deal with the problem of determining
all the perceptual category labels that apply to a PBR.

4.1. A Recognizer for Determining the Perceptual Categories of a Query PBR

Since a PBR can possess multiple perceptual categories simultaneously, one cannot
directly apply the traditional notion of classification to a PBR with respect to perceptual
category labels. Instead, we will use the notion of a recognizer. While a classifier attempts to
assign a single label to an unknown object, a recognizer seeks to come up with all possible
labels that could be used to characterize the same object. Of course, within the framework
of a recognizer, the assignment of each perceptual category label can still be based on a
simple classifier that tries to distinguish between the applicability of a given perceptual
category label.

The schema used for the recognizer is as shown in Fig. 20. Let PC ={PC,, PC>, ...,
PCy,} be the set of all perceptual category labels. To determine all the labels that apply
to a given PBR, we test for the applicability of each label separately. Given a PBR P, of
unknown perceptual category, a feature vector Xp, ; that contains image features relevant
to a specific perceptual category label j is extracted. Let Xp, = {qu,l, Xp, 25005 qu,NG}
be the collection of feature vectors of P, for all the perceptual category labels. For the
category label j, a set of classifiers, {L;x(-)|1 <k < Ng, j # k}, is built off-line to test the
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FIG. 20. A flow chart to recognize all possible perceptual categories.

applicability of label j. Each classifier L consists of a set of decision thresholds that when
applied to the features Xp, ; tell us whether the PBR belongs to the perceptual category j
or to the perceptual category k. There are Ng — 1 classifiers for each label and Ng(Ng — 1)
classifiers for all labels in the system. The decision threshold in each classifier L ; 4 is based
on the minimization of the estimated cost of misclassification (ECM) [30]. The classifier
design is discussed in greater detail in Appendix B. Each perceptual classifier L ; x casts one
vote for the category j if the decision threshold corresponding to that classifier is satisfied.

For a query PBR P,, the recognizer is then able to provide the system the votes Vp, for all
possible perceptual category labels. Let Vp, (j) be the vote for the jth perceptual category.
A pseudo-code description of this schema follows:

Pseudo code for the assignment of each category label
01 for(j=0;j<Ng;j++){
02 for (k=0;k < Ng; k++) {

03 if (j £k {

04 /I extracting features for category j
05 Xp,.j < feature Extraction(P; ;)
06 if (4 (Xp, ) = 0)

07 Vi, ()++;

08 }

09 }

10 }

where [; ; is the likelihood ratio test for the classifier L x.

What comes out of the recognizer is a vote vector for a given PBR. Ideally, we would
like to reject votes that are too few in number and accept the rest as legitimate perceptual
categories for the PBR. But for lack of suitable logical considerations that could be used
for vote rejection, we have used the approach discussed below.

4.2. Retrieval Based on Vote Vectors

The recognizer of the preceding section yields an Ng-dimensional vote vector, Vp,,
for a query PBR. This also applies to each new image as it is entered into the database.
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FIG. 21. A decision tree created to index PBRs based on the vote vector. The label under each nonleaf node
means that the vote for a certain perceptual category was subject to a decision threshold.

Therefore, each PBR in each database image has its own vote vector V. Each element of V
has value from zero to Ng. Retrieval on the basis of disease categories can then be carried
out on the basis of similarity of vote vectors. How this is done will be described next.

We create supervised training data by grouping those PBR vote vectors together that
yield identical diagnoses (disease labels). A decision tree created by C4.5 [31] is grown to
index these PBR vote vectors. The decision tree is shown in Fig. 21.

To retrieve database PBRs, the vote vector Vp, of a query PBR is used to locate a leaf
node of the decision tree. At least one representative disease category will be retrieved from
that leaf node and all PBR’s associated with that node will be pooled and denoted by P,

For example, if Vp =[SEP=35, BRO=0, TIB=0, BWT=0, MUP=0, SNO=1,
CON=0, GG=4, EMP=0, MOS =0, CYS=0, HON =2], the system would retrieve
PBRs with disease label IPF. Let Pp’j”,e , be the kth candidate PBR from P,,,,. If the number
of retrieved PBRs is less than what a query requested, we can relax the query by including
the leaf nodes that share the same parent node with the selected leaf nodes. On the other
hand, if there are more candidate database PBRs than what we expect after query relaxation,
we rank the PBRs in P,,,,, based on the following measurement:

SN min(Ve, (), Ve ()))
k _ J q pooled
S(P, Pt,)= P (e N (11)

El

The value of S ranges from zero to one. A perfect retrieval is expected to have S=1; a
totally irrelevant retrieval S =0.

5. EXPERIMENTAL RESULTS

Our database, created in the manner described in Section 3, contains 1873 PBRs from
998 HRCT lung images. Table 1 shows the database distribution with respect to the different
diseases and with respect to the different perceptual categories. Note that the distribution
of our data is skewed and the majority class—the disease emphysema—comprises around
60% of all the PBRs. This is a fact of life about medical databases in general since diseases
occur with widely varying frequencies in the population.
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TABLE 2
Retrieval Precision Based on Disease Categories

Percentage
Number of

Diagnosis queries Scatter-shot ~ Perceptual-category ~ SFS-on-perceptual
ASP 10 58 72 61
BOOP 10 62 82 70
BRO 20 72 84 75
CLE 20 80 82 82
DIP 10 62 75 68
EG 20 75 83 73
IPF 20 73 78 76
PAN 20 37 68 58
PAR 10 85 83 82
PCP 10 52 81 57
POL 10 48 78 49
SAR 20 67 71 67
Total DB 180 65.27 77.39 69.38

We have evaluated our approach by measuring the retrieval precision based on disease
class. 818 images were used to train the system and the remaining 180 images to evaluate
the performance of the system. The experiment consists of the following steps: (1) Select
an image from the 180 images (testing database) as a query image; (2) Ask the system to
retrieve the four most similar images from the database, taking into account the modified
mean differences and linear classifiers discussed in Section 3.3 for the different perceptual
categories; and (3) Compare the disease class of the PBRs in the query image with the
disease class of the PBRs in the retrieved images from Eq. (11).

The precision of the retrieval results is shown in Table 2. On the average, using perceptual
categories for retrieval in the manner described here resulted in improving the precision
rates from 65.27% to 77.39% over the traditional methods. The first column in this table
corresponds to using the “traditional” approach described in [21] in which we start with
an exhaustive list of low-level image features that are subsequently pruned by employing
the sequential forward selection (SFS) method [23]. Table 2 also shows the retrieval results
obtained when sequential forward selection is applied to only those low-level features that
we use for detecting the perceptual categories (see Section 2). Retrieval using these low-
level features (but not including the perceptual categories themselves) is accomplished with
the k-NN (k nearest neighbors) algorithm. As the table shows, on the average the precision
rate with this algorithm is 69.38%, as compared with the 77.39% obtained when perceptual
categories are used as described in this paper.

6. CONCLUSION

What specific features to use for content-based retrieval is more a function of the level
of ingenuity of researchers than a result of some precise scientific analysis. In the past, we
used the scattershot approach, which characterized the pathology bearing regions with an
exhaustive set of features and then used a standard dimensionality reduction tool to pull out
the feature set that was maximally discriminatory with respect to the disease categories.
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In the work reported in this paper, we have eschewed this previous approach. We now
extract only those low-level features that measure the presence or the absence of the various
perceptual categories that the physicians use for disease diagnosis. MANOVA is then used to
test the discriminatory power of these features and the Bonferroni method used to determine
how much weight to assign to each feature. According to our experimental results, this new
approach to feature extraction and image characterization has yielded retrieval performance
that is superior for most of the disease classes.

This paper has focused primarily on the computer vision aspects of designing an image
retrieval system using the perceptual categories of the domain experts. But, before closing,
we should also mention that such as system is more likely to be accepted by the end users.
A physician is more likely to identify with and accept a system such as the one described here
because the decision processes involved bear some resemblance to those of the physician. If
an expert physician disagreed with the disease labels assigned by our system to a new image,
the physician could question the system about the perceptual categories detected in the image
and ascertain the appropriateness of those categories. In that sense, the system described
here possess superior explanatory powers for a richer interaction with the physician.

APPENDIX A

Assessing the Normality Assumption

Before MANOVA can be applied, the data must satisfy certain assumptions. The most
notable of these are: (1) each observation X, ; is arandom sample from perceptual category
g; (2) the random samples from different categories are independent; and (3) the distribution
corresponding to each category is multivariate normal. We believe that our data does indeed
satisfy the first two assumptions.® With regard to the third assumption, we have performed
normality tests which will be discussed in the following subsection.

1. Quantile Plots for Establishing Normality

We will now briefly present the quantile plot technique we use to establish the normality
of the feature space distributions associated with the various perceptual categories. For the
multivariate case, these plots are also referred to as the Chi-squared plots [29].

To explain the basic idea underlying this approach to testing for normality, let x;’s be
univariate samples (1 < i < n) and let z;’s be their standardized versions,

z = ; (12)

where s is an estimate of sample variance. Let x;)’s be the ordered versions of x;’s;
X)) = X2) = S X1 = Xn)» (13)
where x(y is the smallest value among the x;’s and x(, the largest. Their corresponding

6 The standard formulas of MANOVA also require that the covariance matrices of the populations be the same.
For now we have ignored this requirement. Hypothesis testing without this assumption will be addressed by us in
the future.
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Z(j)’s also preserve the order:
I 2 = 2 Ze-1) = - (14)

Assuming the ordered samples are continuous, the standardized version zj) is the (%)th
quantile of the standard normal distribution. We denote ¢ as the jth quantile, which is
defined by the relation

aWw 1 2 j—1
Pr(Z <q;) = me > =pG = P (15)
—00

For the purpose of implementation convenience, as suggested by Looney et al. [32], we use

1= o { instead of j— . The expected value of z; can be estimated as follows:

j— 3
Elz] = @™ < ?) =q(j)- (16)

What we are interested in knowing is how to utilize the properties of the above standard
normal distribution to test the normality of the collected samples x;’s. From Egs. (12) and
(16), the relationship between the collected samples x;) and their corresponding quantile
values ¢(;) can be expressed in the form

X(j) =X +5q) €, (17)

where, as argued by [29], the deviation € is small, particularly when the sample size n is
large. Therefore, as shown in [29], the straightness of a plot of x(y versus g, can be used to
establish normality when 7 is as small as 20. Such plots are known as Q—Q plots, for quantile—
quantile, since one plots the quantiles obtained from the actual data versus the quantiles
from a true normal distribution. Figure 22a shows a Q—Q plot for n = 20 for a data set drawn
by a random number generator from a normal distribution. As suggested by Eq. (17), the

0 plot for 1-varts romel n=20 ~ ChiSouare QQ plot for Cystc e

X1

FIG. 22. (a) A QQ plot for a univariate normal distribution. (b) A chi-squared QQ plot for cystic structure
features: the number of cystic structures, the average size of cystic structures, the grey mean for the lumens of
the cystic structures, the grey mean for the walls, and the coverage of cystic structures in the marked PBR. The
measured correlation coefficient is 0.993 with sample size 56.
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TABLE 3
Critical Points for the Q-Q Plot Correlation Coefficient
Test for Normality
Sample size 0.01 0.05 0.10

5 0.8299 0.8788 0.9032
10 0.8801 0.9198 0.9351
15 0.9126 0.9389 0.9503
20 0.9269 0.9508 0.9604
25 0.9410 0.9591 0.9665
30 0.9479 0.9652 0.9715
35 0.9538 0.9682 0.9740
40 0.9599 0.9726 0.9771
45 0.9632 0.9749 0.9792
50 0.9671 0.9768 0.9809
55 0.9695 0.9787 0.9822
60 0.9720 0.9801 0.9836
75 0.9771 0.9838 0.9866
100 0.9822 0.9873 0.9895
150 0.9879 0.9913 0.9828
200 0.9905 0.9931 0.9942
300 0.9935 0.9953 0.9960

slope of the plot is the estimated sample variance s and the offset (or intercept) of the vertical
axis is the estimated sample mean. In addition to visually examining the “straightness” of
the paired (x(j), g¢j))’s values in the plot, we can use the following correlation coefficient to
provide a quantitative measure of the test:

L > (xg) — %) (a) — 4)
Q — .
2 N2
\/Z'}:] (x) — %) \/Z?:l C))
Table 3 lists what statisticians refer to as critical points for accepting or rejecting the

hypothesis that a sample set was drawn from a normal distribution on the basis of the value
of rp within a chosen confidence interval and for a given sample size. So, if n =100 and

(18)

we want to test for normality at a confidence level of 99%, we would want r( to be at least
0.9822.

For the multivariate case, let X; be the jth sample vector, j =1, ..., n, of dimension
p and let X and S be the estimated mean vector and the estimated convariance matrix,
respectively. To test for multivariant normality, first we compute the squared Mahalanobis
distances:

= (X; -X)'S7'(X; - X. (19)

When the sample size n and n — p are greater than 30 [29], each d; should behave like a
chi-squared random variable. Similar to what was done for the univariate case, we order the
squared Mahalanobis distances for all samples:

iy < dpy < -+ < dp,,. (20)
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The quantile corresponding to the sorted X; is then obtained as

. 3 . 3

J—3 2( =) T
. =2 —L2%), 21
q,p(n+%> Xp( n~|—% 21

where g, p( 8) is the 100, p(j 8) quantlle of the chi-squared distribution with p

degrees of freedom The paired (g, p( o 8, d, )) s should remain along a straight line
with slope equals to one and passing through the origin. We then use the correlation coeffi-
cients to test the normality of the observed multivariate samples. Figure 22b shows a Q-Q
plot for testing the normality of three image attributes used to detect the presence of the
cystic structure.

APPENDIX B

Design of the Recognizer and Misclassification Costs

As mentioned earlier, within the framework of a recognizer, the assignment of a perceptual
category label to a PBR is based on a set of linear classifiers. Taking into consideration the
category population distributions, these classifiers seek to minimize the expected cost of
misclassification (ECM).

If Perceptual Category A does not share any PBRs with Perceptual Category B, we assign
the highest cost to the misclassification from A to B and vice versa. Not sharing any PBRs
is tantamount to not sharing any disease diagnoses. On the other hand, when two perceptual
categories share common PBRs, we would like to find the costs of misclassification from A
to B, as well as from B to A. The reason why these costs may be different can be explained
with the following example. In Table 4, MUP shares 23 out of 25 PBRs with BRO. This
means M UP shares the same diagnoses as BRO in 92% of the cases in our training sample set.
Therefore, we assign a “small” penalty to misclassifying a query PBR that has the perceptual
category MUP as the perceptual category BRO. However, BRO shares only 23 out of 234
PBRs with MUP, meaning that only 10% of the PBRs with the perceptual category BRO
share the same diagnosis as the perceptual category MUP. We would, therefore, want to
assign a “bigger” misclassification penalty in this case.

TABLE 4
A Matrix of Cooccurrence Frequencies among Perceptual Categories

Perceptual SEP BRO TIB BWT MUP SNO CON GG EMP MOS CYS HON

SEP 478 1 3 31 0 114 41 413 22 0 0 177
BRO 1 234 33 122 23 8 0 26 6 20 0 1
TIB 3 33 79 24 2 21 3 32 0 2 0 0
BWT 31 122 24 220 10 37 12 84 24 19 0 4
MUP 0 23 2 10 25 2 0 2 0 0 0 0
SNO 114 8 21 37 2 231 36 193 8 0 3 14
CON 41 0 3 12 0 36 78 72 0 0 0 4
GG 413 26 32 84 2 193 72 728 13 0 0 158
EMP 22 6 0 24 0 8 0 13 788 0 0 0
MOS 0 20 2 19 0 0 0 0 0 23 0 0
CYS 0 0 0 0 0 3 0 0 0 0 57 1
HON 177 1 0 4 0 14 4 158 0 0 1 199
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TABLE 5
Costs of Misclassification between Perceptual Categories

Perceptual SEP BRO TIB BWT MUP SNO CON GG EMP MOS CYS HON

SEP 0 099 096 0.86 1.00 051 047 043 097 1.00  1.00 0.11
BRO 099 0 0.58 045 008 097 1.00 09 099 0.13 1.00 0.99
TIB 099 086 O 0.89 092 091 096 095 1.00 091 1.00  1.00
BWT 094 048 0.70 0 060 084 08 088 096 0.17 1.00 098
MUP 1.00 090 097 0.95 0 099 1.00 099 1.00 1.00  1.00  1.00
SNO 076 096 073 0.83 092 0 054 073 0.99 1.00 095 0.93
CON 091 1.00 096 0.95 1.00 084 O 090 1.00 1.00  1.00 0.98
GG 0.14 089 059 0.62 092 016 008 O 0.98 1.00  1.00 0.21
EMP 095 097 100 0.89 1.00 097 100 098 0 1.00 1.00  1.00
MOS 1.00 091 097 0091 1.00 100 100 100 1.00 O 1.00  1.00
CYS 1.00 1.00 1.00 1.00 1.00 099 100 1.00 1.00 1.00 0 0.99

HON 0.63 099 100 098 1.00 094 095 078 1.00 1.00 098 0

Let C(pck|pc;) be the misclassification cost when an observation comes from perceptual
category j, but is misclassified as perceptual category k. We use the following formula for
this cost,

Clpeclpej) = L=, 22)
8j.j
where s; ; is the total number of PBRs with perceptual category j and s; ; is the number
of PBRs common to the perceptual categories j and k. For example, from Table 4 we have
ssepsep =478 and ssgpsno = 114. Table 5 lists the misclassification costs obtained in this
manner.

Let p; and p; be the prior probabilities of the perceptual categories j and k. The prior
pj is given by s; ; /s, where s7 is the total number of PBRs in a database. In our case,
st =1873. Taking into account these priors, the misclassification costs C(pc;|pcy) and
C(pcklpc;), and the weighted mean difference (ij,k as given by Eq. (10), the likelihood
ratio test for pairwise classification between any two perceptual categories j and k is given
by

_ C(pcjlpe)\ [ pr
X ! d S edXi + X —In| | L) (2], (23
1je(X) = dj kS pppreaX Jk ponl@d( i+ X —1n KC(PCHPC]') Pj >

where the overall covariance matrix Sp,orq i defined as

N,,C/. -1
(NPC/‘ - 1) + (NPCk - 1)

Npe, — 1
SPooled = Sj + |: = — l) :| Sk. 24
PCk

(NPC./' - 1) + (N

In the above equation, S ; and S;, are the covariance matrices associated with the populations
for the perceptual categories j and k, respectively. Let d; i, kSpoo[ed =a’ and y=a’X. The
likelihood ratio test in Eq. (23) can then be reexpressed as

o C@qmﬂv<m>}
o [ Ceilped (T 25
jX) = ax =501 +y2) HKC(PCHPCJ) P -
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APPENDIX C

Abbreviations for Medical Terms Used in This Paper

TABLE 6

List of Abbreviations Used for Disease Categories

Abbreviations Meaning
ASP Aspergillus
BOOP Bronchiolitis obliterans organizing pneumonia
BRO Bronchiectasis
CLE Centrilobular emphysema
DIP Desquamitive interstitial pneumonitis
EG Eosinophilic granuloma
IPF Idiopathic pulmonary fibrosis
MET Metastatic calcification
PAN Panacinar
PAR Paraseptal emphysema
PCP Pneumocystis carinii pneumonia
POL Polymyositis
SAR Scleroderma
TABLE 7
List of Abbreviations Used for
Perceptual Categories
Abbreviations Meaning
SEP Interlobular septal thickening
PAR Parenchymal bands
BRO Bronchiectasis
TIB Tree-in-bud
BWT Bronchial wall thickening
MUP Mucus plugging
SNO Small nodules
CAV Cavity
CON Conglomerate nodules
CAL Calcification
EMP Emphysema
MOS Mosaic perfusion
CYS Cysts
HON Honeycombing
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