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Abstract: This paper uses an ensemble of classifiers and active learning strategies to 

predict radiologists’ assessment of the nodules of the Lung Image Database Consortium 

(LIDC). In particular, the paper presents machine learning classifiers that model agreement 

among ratings in seven semantic characteristics: spiculation, lobulation, texture, sphericity, 

margin, subtlety, and malignancy. The ensemble of classifiers (which can be considered as 

a computer panel of experts) uses 64 image features of the nodules across four categories 

(shape, intensity, texture, and size) to predict semantic characteristics. The active learning 

begins the training phase with nodules on which radiologists’ semantic ratings agree, and 

incrementally learns how to classify nodules on which the radiologists do not agree. Using 

our proposed approach, the classification accuracy of the ensemble of classifiers is higher 

than the accuracy of a single classifier. In the long run, our proposed approach can be used 

to increase consistency among radiological interpretations by providing physicians a  

“second read”. 
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1. Introduction  
 

Interpretation performance varies greatly among radiologists when assessing lung nodules on 

computed tomography (CT) scans. A good example of such variability is the Lung Image Database 

Consortium (LIDC) dataset [1] for which out of 914 distinct nodules identified, delineated, and 

semantically characterized by up to four different radiologists, there are only 180 nodules on average 

across seven semantic characteristics on which at least three radiologists agreed with respect to the 

semantic label (characteristic rating) applied to the nodule. Computer-aided diagnosis (CADx) systems 

can act as a second reader by assisting radiologists in interpreting nodule characteristics in order to 

improve their efficiency and accuracy.  

In our previous work [2] we developed a semi-automatic active-learning approach [3] for predicting 

seven lung nodule semantic characteristics: spiculation, lobulation, texture, sphericity, margin, 

subtlety, and malignancy. The approach was intended to handle the large variability among 

interpretations of the same nodule by different radiologists. Using nodules with a high level of 

agreement as initial training data, the algorithm automatically labeled and added to the training data 

those nodules which had inconsistency in their interpretations. The evaluation of the algorithm was 

performed on the LIDC dataset publicly available at the time of publication, specifically on 149 distinct 

nodules present in the CT scans of 60 patients. 

A new LIDC dataset consisting of 914 distinct nodules from 207 patients was made publicly 

available as of June 2009. This has opened the way to further investigate the robustness of our 

proposed approach. Given the highly non-normal nature of medical data in general and of the LIDC 

dataset in particular (for example, on the set of 236 nodules for which at least three radiologists agree 

with respect to the spiculation characteristic, 231 of these nodules are rated with a 1 (”marked 

spiculation”) and only five nodules are rated with ratings from 2 to 5 (where 5 “no spiculation”), we 

include in our research design a new study to evaluate the effects of balanced and unbalanced datasets 

on the proposed ensemble’s performance for each of the seven characteristics. Furthermore, we 

investigate the agreement between our proposed computer-aided diagnostic characterization (CADc) 

approach and the LIDC radiologists’ semantic characterizations using the weighted kappa statistic [4] 

which takes into account the general magnitude of the radiologists’ agreement and weighs the 

differences in their disagreements with respect to every available instance. Finally, we include a new 

research study to investigate the effects of the variation/disagreement present in the manual lung 

nodule delineation/segmentation on performance of the ensemble of classifiers. 

The rest of the paper is organized as follows: we present a literature review relevant to our work in 

Section 2, the National Cancer Institute (NCI) LIDC dataset and methodology in Section 3, the results 

in Section 4, and our conclusions and future work in Section 5. 

 
2. Related Work  
 

A number of CAD systems have been developed in recent years for automatic classification of lung 

nodules. McNitt-Gray et al. [5,6] used nodule size, shape and co-occurrence texture features as nodule 

characteristics to design a linear discriminant analysis (LDA) classification system for malignant 
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versus benign nodules. Lo et al. [7] used direction of vascularity, shape, and internal structure to build 

an artificial neural network (ANN) classification system for the prediction of the malignancy of 

nodules. Armato et al. [8] used nodule appearance and shape to build an LDA classification system to 

classify pulmonary nodules into malignant versus benign classes. Takashima et al. [9,10] used shape 

information to characterize malignant versus benign lesions in the lung. Shah et al. [11] compared the 

malignant vs. benign classification performance of OneR [12] and logistic regression classifiers learned 

on 19 attenuation, size, and shape image features; Samuel et al. [13] developed a system for lung 

nodule diagnosis using Fuzzy Logic. Furthermore, Sluimer et al. [14] and more recently Goldin  

et al. [15] summarized in their survey papers the existing lung nodule segmentation and  

classification techniques. 

There are also research studies that use clinical information in addition to image features to classify 

lung nodules. Gurney et al. [16,17] designed a Bayesian classification system based on clinical 

information, such as age, gender, smoking status of the patient, etc., in addition to radiological 

information. Matsuki et al. [18] also used both clinical information and sixteen features scored by 

radiologists to design an ANN for malignant versus benign classification. Aoyama et al. [19] used two 

clinical features in addition to forty-one image features to determine the likelihood measure of 

malignancy for pulmonary nodules on low-dose CT images.  

Although the work cited above provides convincing evidence that a combination of image features 

can indirectly encode radiologists’ knowledge about indicators of malignancy (Sluimer et al. [14]), the 

precise mechanism by which this correspondence happens is unknown. To understand this mechanism, 

there is a need to explore several approaches for finding the relationships between the image features 

and radiologists’ annotations. Kahn et al. [20] emphasized recently the importance of this type of 

research; the knowledge gathered from the post-processed images and its incorporation into the 

diagnosis process could simplify and accelerate the radiology interpretation process. 

Notable work in this direction is the work by Barb et al. [21] and Ebadollahi et al. [22,23].  

Barb et al. proposed a framework that uses semantic methods to describe visual abnormalities and 

exchange knowledge in the medical domain. Ebadollahi et al. proposed a system to link the visual 

elements of the content of an echocardiogram (including the spatial-temporal structure) to external 

information such as text snippets extracted from diagnostic reports. Recently, Ebadollahi et al. 

demonstrated the effectiveness of using a semantic concept space in multimodal medical  

image retrieval.  

In the CAD domain, there is some preliminary work to link images to BI-RADS. Nie et al. [24] 

reported results linking the gray-level co-occurrence matrix (GLCM) entropy and GLCM sum average 

to internal enhancement patterns (homogenous versus heterogeneous) defined in BI-RADS, while  

Liney et al. [25] linked complexity and convexity image features to the concept of margin and 

circularity to the concept of shape. Our own work [26,27] can also be considered one of the initial steps 

in the direction of mapping lung nodule image features first to perceptual categories encoding the 

radiologists’ knowledge about lung interpretation and further to the RadLex lexicon [28].  

In this paper we propose a semi-supervised probabilistic learning approach to deal with both the 

inter-observer variability and the small set of labeled data (annotated lung nodules). Given the ultimate 

use of our proposed approach as a second reader in the radiology interpretation process, we investigate 
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the agreement between the ensemble of classifiers and the LIDC panel of experts as well as the 

performance accuracy of the ensemble of classifiers. The accuracy of the ensemble is calculated as the 

number of correctly classified instances over the total number of instances. The agreement is measured 

using weighted kappa statistic as introduced by Cohen [4,29]. The weighted kappa statistic takes into 

account the level of disagreement and the specific category on which raters agreed for each observed 

case, reflecting the importance of a certain rating. Originally, the kappa statistic was intended to 

measure the agreement between two raters across a number of cases, where the pair of raters is fixed 

for all cases. Fleiss [30] proposed a generalization of kappa statistics which measures the overall 

agreement across multiple observations when more than two raters were interpreting a specific case. 

Landis and Koch [31] explored the use of kappa statistics for assessing the majority agreement by 

modifying the unified agreement evaluation approach that they proposed in a previously published  

paper [32]. An approach proposed by Kraemer [33] extended the technique proposed by Fleiss [34] to 

situations in which there are a multiple number of observations per subject and a multiple, inconstant 

number of possible responses per observation. More recently, Viera and Garrett [35] published a paper 

that describes and justifies a possible interpretation scale for the value of kappa statistics obtained in 

the evaluation of inter-observer agreement. They propose to split the range of possible values of the 

kappa statistic into several intervals and assign an ordinal value to each of them as shown in Table 1. 

We will use this interpretation scale to quantify the agreement between the panel of LIDC experts and 

the ensemble of classifiers. 

Table 1. Kappa statistics interpretation scale. 

k-value (%) Strength of Agreement beyond Chance 
<0 Poor 

0–0.2 Slight 
0.21–0.4 Fair 
0.41–0.6 Moderate 
0.61–0.8 Substantial 
0.81–1 Almost perfect 

 
3. Methodology 
 
3.1. LIDC dataset 

 

The publicly available LIDC database (downloadable through the National Cancer Institute’s 

Imaging Archive web site-http://ncia.nci.nih.gov/) provides the image data, the radiologists’ nodule 

outlines, and the radiologists’ subjective ratings of nodule characteristics for this study. The LIDC 

database currently contains complete thoracic CT scans for 208 patients acquired over different periods 

of time and with various scanner models resulting in a wide range of values of the imaging acquisition 

parameters. For example, slice thickness ranges between 0.6 mm and 4.0 mm, reconstruction diameter 

ranges between 260 mm and 438 mm, exposure ranges between 3 ms and 6,329 ms, and the 

reconstruction kernel has one of the following values: B, B30f, B30s, B31f, B31s, B45f, BONE, C, D, 

FC01, or STANDARD.  
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Table 2. LIDC nodule characteristics with corresponding rating scale. 

Characteristic Notes and References Possible Scores 
Calcification Pattern of calcification present in the nodule  1. Popcorn 

2. Laminated 
3. Solid 
4. Non-central 
5. Central 
6. Absent 

Internal 
structure 

Expected internal composition of the nodule 1. Soft Tissue 
2. Fluid 
3. Fat 
4. Air 

Lobulation Whether a lobular shape is apparent from the 
margin or not  

1. Marked 
2. . 
3. . 
4. . 
5. None 

Malignancy Likelihood of malignancy of the nodule - 
Malignancy is associated with large nodule size 
while small nodules are more likely to be benign. 
Most malignant nodules are non-calcified and 
have spiculated margins. 

1. Highly Unlikely 
2.Moderately Unlikely 
3. Indeterminate 
4.Moderately 
Suspicious  
5. Highly Suspicious 

Margin How well defined the margins of the nodule are 1. Poorly Defined 
2. . 
3. . 
4. . 
5. Sharp 

Sphericity Dimensional shape of nodule in terms of its 
roundness 

1. Linear 
2. . 
3. Ovoid 
4. . 
5. Round 

Spiculation Degree to which the nodule exhibits spicules, 
spike-like structures, along its border - Spiculated 
margin is an indication of malignancy 

1. Marked 
2. . 
3. . 
4. . 
5. None 

Subtlety Difficulty in detection - Subtlety refers to the 
contrast between the lung nodule and its 
surrounding 

1. Extremely Subtle  
2. Moderately Subtle  
3. Fairly Subtle  
4.Moderately Obvious  
5. Obvious 

Texture Internal density of the nodule - Texture plays an 
important role when attempting to segment a 
nodule, since part-solid and non-solid texture can 
increase the difficulty of defining the nodule 
boundary 

1. Non-Solid 
2. . 
3. Part Solid/(Mixed)  
4. . 
5. Solid 
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The XML files accompanying the LIDC DICOM images contain the spatial locations of three types 

of lesions (nodules < 3 mm in maximum diameter, but only if not clearly benign; nodules > 3 mm  

but <30 mm regardless of presumed histology; and non-nodules > 3 mm) as marked by a panel of up  

to 4 LIDC radiologists. For any lesion marked as a nodule > 3 mm, the XML file contains the 

coordinates of nodule outlines constructed by any of the 4 LIDC radiologists who identified that 

structure as a nodule > 3 mm. Moreover, any LIDC radiologist who identified a structure as a  

nodule > 3 mm also provided subjective ratings for 9 nodule characteristics (Table 2): subtlety, internal 

structure, calcification, sphericity, margin, lobulation, spiculation, texture, and malignancy likelihood. 

For example, the texture characteristic provides meaningful information regarding nodule appearance 

(“Non-Solid”, “Part Solid/(Mixed)”, “Solid”) while malignancy characteristic captures the likelihood 

of malignancy (“Highly Unlikely”, “Moderately Unlikely”, “Indeterminate”, “Moderately Suspicious”, 

“Highly Suspicious”) as perceived by the LIDC radiologists. The process by which the LIDC 

radiologists reviewed CT scans, identified lesions, and provided outlines and characteristic ratings for 

nodules > 3 mm has been described in detail by McNitt-Gray et al. [36]. 

The nodule outlines and the seven of the nodule characteristics were used extensively throughout 

this study. Note that the LIDC did not impose a forced consensus; rather, all of the lesions indicated by 

the radiologists at the conclusion of the unblinded reading sessions were recorded and are available to 

users of the database. Accordingly, each lesion in the database considered to be a nodule > 3 mm could 

have been marked as such by only a single radiologist, by two radiologists, by three radiologists, or by 

all four LIDC radiologists. For any given nodule, the number of distinct outlines and the number of sets 

of nodule characteristic ratings provided in the XML files would then be equal to the number of 

radiologists who identified the nodule. 

3.2. Image feature extraction 

For each nodule greater than 5 × 5 pixels (around 3 × 3 mm) − nodules smaller than this would not 

have yielded meaningful texture data – we calculate a set of 64 two-dimensional (2D), low-level image 

features grouped into four categories: shape features, texture features, intensity features, and size 

features (Table 3 and Appendix 1). Although each nodule is present in a sequence of slices, in this 

paper we are considering only the slice in which the nodule has the largest area along with up to four 

(depending on the number of radiologists detecting and annotating the corresponding nodule) image 

instances corresponding to this slice (Figure 1). In our future work, we will also investigate the use of 

three-dimensional (3D) features to encode the image content of the lung nodules and compare the 

classification power of the 3D features versus the 2D features [37]. 

After completion of the feature extraction process, we created a vector representation of every 

nodule image which consisted of 64 image features and 9 radiologists’ annotations (Figure 2). 
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Figure 1. An example of four different delineations of a nodule on a slice marked by four 

different radiologists. 

 
                              Reader 1 

 
Reader 2 

 
                            Reader 3 

  
Reader 4 

Figure 2. An example of nodule characteristics assigned by a radiologist and normalized 

low-level features computed from image pixels.  

 

Lobulation = 5 

“none” 

Malignancy = 5 

“highly suspicious” 

Lobulation = 2 

Malignancy = 5 “highly 

suspicious” 

Sphericity = 5 “round” 

Lobulation = 4 

Malignancy = 5 “highly 

suspicious” 

Sphericity = 2 

Lobulation = 1 

“marked” 

Malignancy = 5 

“highly suspicious” 
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Table 3. Image features extracted from each lung nodule’s region of interest; SD stands for 

standard deviation and BG for background. 

Shape Features Size Features Intensity Features 
Circularity 
Roughness 
Elongation 

Compactness 
Eccentricity 

Solidity 
Extent 

RadialDistanceSD 

Area 
ConvexArea 

Perimeter 
ConvexPerimeter 
EquivDiameter 

MajorAxisLength 
MinorAxisLength 

MinIntensity 
MaxIntensity 
MeanIntensity 
SDIntensity 

MinIntensityBG 
MaxIntensityBG 
MeanIntensityBG 
SDIntensityBG 

IntensityDifference 
Texture Features 

11 Haralick features calculated from co-occurrence matrices (Contrast, 
Correlation, Entropy, Energy, Homogeneity, 3rd Order Moment, Inverse 
variance, Sum Average, Variance, Cluster Tendency, Maximum Probability) 
24 Gabor features are mean and standard deviation of 12 different Gabor 
images (orientation = 0º, 45º, 90º, 135º and frequency = 0.3, 0.4, 0.5) 

5 Markov Random Fields (MRF) features are means of 4 different response 
images (orientation = 0º, 45º, 90º, 135º), along with the variance response 
image 

 

Size Features 

 

We use the following seven features to quantify the size of the nodules: area, ConvexArea, 

perimeter, ConvexPerimeter, EquivDiameter, MajorAxisLength, and MinorAxisLength. The area and 

perimeter image features measure the actual number of pixels in the region and on the boundary, 

respectively. The ConvexArea and ConvexPerimeter measure the number of pixels in the convex hull 

and on the boundary of the convex hull corresponding to the nodule region. EquivDiameter is the 

diameter of a circle with the same area as the region. Lastly, the MajorAxisLength and 

MinorAxisLength give the length (in pixels) of the major and minor axes of the ellipse that has the 

same normalized second central moments as the region.  

 

Shape Features 

 

We use eight common image shape features: circularity, roughness, elongation, compactness, 

eccentricity, solidity, extent, and the standard deviation of the radial distance. Circularity is measured 

by dividing the circumference of the equivalent area circle by the actual perimeter of the nodule. 

Roughness can be measured by dividing the perimeter of the region by the convex perimeter. A smooth 

convex object, such as a perfect circle, will have a roughness of 1.0. The eccentricity is obtained using 

the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the distance 

between the foci of the ellipse and its major axis length. The value is between 0 (a perfect circle) and 1 

(a line). Solidity is the proportion of the pixels in the convex hull of the region to the pixels in the 
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intersection of the convex hull and the region. Extent is the proportion of the pixels in the bounding 

box (the smallest rectangle containing the region) that are also in the region. Finally, the 

RadialDistanceSD is the standard deviation of the distances from every boundary pixel to the centroid 

of the region.  

 

Intensity Features 

 

Gray-level intensity features used in this study are simply the minimum, maximum, mean, and 

standard deviation of the gray-level intensity of every pixel in each segmented nodule and the same 

four values for every background pixel in the bounding box containing each segmented nodule. 

Another feature, IntensityDifference, is the absolute value of the difference between the mean of the 

gray-level intensity of the segmented nodule and the mean of the gray-level intensity of its background.  

 

Texture Features 

 

Normally texture analysis can be grouped into four categories: model-based, statistical-based, 

structural-based, and transform-based methods. Structural approaches seek to understand the hierarchal 

structure of the image, while statistical methods describe the image using pure numerical analysis of 

pixel intensity values. Transform approaches generally perform some kind of modification to the 

image, obtaining a new “response” image that is then analyzed as a representative proxy for the 

original image. Model-based methods are based on the concept of predicting pixel values based on a 

mathematical model. In this research we focus on three well-known texture analysis techniques: co-

occurrence matrices (a statistical-based method), Gabor filters (a transform-based method), and 

Markov Random Fields (a model based method).  

Co-occurrence matrices focus on the distributions and relationships of the gray-level intensity of 

pixels in the image. They are calculated along four directions (0º, 45º, 90º, and 135º) and five distances 

(1, 2, 3, 4 and 5 pixels) producing 20 co-occurrence matrices. Once the co-occurrence matrices are 

calculated, eleven Haralick texture descriptors are then calculated from each co-occurrence matrix. 

Although each Haralick texture descriptor is calculated from each co-occurrence matrix, we averaged 

the features across all distance/direction pairs resulting in 11 (instead of 11 × 4 × 5) Haralick features  

per image.  

Gabor filtering is a transform based method which extracts texture information from an image in 

the form of a response image. A Gabor filter is a sinusoid function modulated by a Gaussian and 

discretized over orientation and frequency. We convolve the image with 12 Gabor filters: four 

orientations  

(0º, 45º, 90º, and 135º) and three frequencies (0.3, 0.4, and 0.5), where frequency is the inverse of 

wavelength. We then calculate means and standard deviations from the 12 response images resulting  

in 24 Gabor features per image.  

Markov Random Fields (MRFs) is a model based method which captures the local contextual 

information of an image. We calculate five features corresponding to four orientations  

(0°, 45°, 90°, 135°) along with the variance. We calculate feature vectors for each pixel by using a 9 
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estimation window. The mean of four different response images and the variance response image are 

used as our five MRF features. 

 

3.3. Active DECORATE for lung nodule interpretation 

 

We propose to find mappings based on a small labeled initial dataset that, instead of predicting a 

certain rating (class) for a semantic characteristic, will generate probabilities for all possible ratings of 

that characteristic. Our proposed approach is based on the DECORATE [38] algorithm, which 

iteratively constructs an ensemble of classifiers by adding a small amount of data, artificially generated 

and labeled by the algorithm, to the data set and learning a new classifier on the modified data. The 

newly created classifier is kept in the ensemble if it does not decrease the ensemble’s classification 

accuracy. Active-DECORATE [39] is an extension of the DECORATE algorithm that detects 

examples from the unlabeled pool of data that create the most disagreement in the constructed 

ensemble and adds them to the data after manual labeling. The procedure is repeated until a desired 

size of the data set or a predetermined number of iterations is reached. The difference between Active-

DECORATE and our approach lies in the way examples from the unlabeled data are labeled at each 

repetition. While in Active-DECORATE, labeling is done manually by the user, our approach labels 

examples automatically by assigning them the labels (characteristics ratings, in the context of this 

research) with the highest probabilities/confidence as predicted by the current ensemble of classifiers.  

Since the process of generating the ensemble of classifiers for every semantic characteristic is the 

same, we will explain below the general steps of our approach regardless of the semantic characteristic 

to be predicted. The only difference will consist of the initial labeled data that will be used for creation 

of the ensemble of classifiers. For each characteristic, the ensemble will be built starting with the 

nodules on which at least three radiologists’ agree with respect to that semantic characteristic 

(regardless of the other characteristics).  

Figure 3. A diagram of the labeling process.  

 
 

We divided the LIDC data into two datasets: labeled and unlabeled data, where labeled data 

included all instances of the nodules on which at least three radiologists agreed and unlabeled data 
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contained all other instances (Figure 3). The algorithms woks iteratively to move all examples from the 

unlabeled data set to the labeled data set. At each iteration, some instances were chosen for this 

transition using the results of classification specific to that iteration. 

Instances were added to the labeled data set based on the confidence with which they were 

predicted. Instances predicted with probability higher than a threshold were added into the training set 

along with their predicted labels (ratings produced by CAD). When an iteration of the algorithm failed 

to produce any labels of sufficient confidence, every instance left in the unlabeled pool was added to 

the labeled data along with its original label (rating assigned by the radiologist). This is shown by the 

vertical arrow in Figure 3. At this point, the ensemble of classifiers generated in the most recent 

iteration is the ensemble used to generate final classification and accuracy results. 

The creation of the ensemble of classifiers at each iteration is driven by the DECORATE algorithm. 

The steps of the DECORATE algorithm are as follows: first, the ensemble is initialized by learning a 

classifier on the given labeled data. On subsequent steps, an additional classifier is learned by 

generating artificial training data and adding it to the existing training data. Artificial data is generated 

by randomly picking data points from a Gaussian approximation of the current labeled data set and 

labeling these data points in such a way that labels chosen differ maximally from the current 

ensemble’s predictions. After a new classifier is learned based on the addition of artificial data, the 

artificial data is removed from the labeled data set and the ensemble checked against the remaining 

(original, non-artificial) data. The decision on whether a newly created classifier should be kept in the 

ensemble depends on how this classifier affects the ensemble error. If the error increases, the classifier 

is discarded. The process is repeated until the ensemble reaches the desired size (number of classifiers) 

or a maximum number of iterations are performed. A visual representation of the algorithm’s steps is 

shown on Figure 4. 

To label a new unlabeled example x, each classifier Ci, in the ensemble C* provides probabilities 

for the class membership of x. We compute the class membership probabilities for the entire ensemble 

as: 

������ =
∑ �	
,�����∀
�	
∈	∗�

∑ �	
,�����∀
�	
∈	∗�,∀����∈��
 (1)  

where Y is the set of all possible classes (labels), and 
i kC ,yP ( x )  is the probability of example x 

belonging to class yk according to the classifier Ci. The probability given by Equation 1 is used to 

identify the nodules predicted with high confidence.  

In ensemble learning the ensemble can be composed out of classifiers of any type, such as artificial 

neural networks, support vector machines, decision trees, etc. In this paper, we are using decision trees 

(C4.5 implemented in WEKA [40]) and the information gain criterion (Equation 2) for forming the  

trees [41]: 

����, �� = ���������� −�|��|
|�| ������������∈ 

 (2)  

where v is a value of attribute A, |Sv| is the subset of instances of S where A takes the value v, and |S| is 

the number of instances, and 



Algorithms 2009, 2                            

 

 

1484

���������� =��!
	

!"#
log'�! (3)  

where pi is the proportion of instances in the dataset that has the target attribute i from C categories.  

 

Figure 4. The diagram of the DECORATE algorithm. 

 
 

3.4. Evaluation of the CADc  

 

In addition to the evaluation of the CADc performance with respect to its accuracy (the ratio of the 

correctly classified instances over the total number of instances), we investigate the effects of the 

variation in the manually delineated nodule boundaries across radiologists on the accuracy of the 

ensemble of classifiers. Furthermore, we evaluate the agreement between the ensemble’s predictions 

and the radiologists’ ratings using kappa statistics as presented below.  

 

3.4.1. Variability index as a measure of variability in the lung nodule manual segmentation  

 

We also investigated the accuracy of our algorithm with respect to the variation in the boundary of 

the nodules which can affect the values of the low-level image features. We introduced in [42] a 

variability index VI  that measures the segmentation variability among radiologists.  
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We first construct a probability map (p-map) that assigns each pixel a probability of belonging to the 

lung nodule by looking at the areas inside each of the contours, so that each value p(r,c) in the 

probability map equals the number of radiologists that selected the given pixel. The p-map matrix can 

be normalized by dividing the entire matrix by 4 (the total number of possible contours). Two more 

matrices are constructed to calculate the variability index metric. The first is the cost map C  

(Equation 4), which contains a cost for each pixel. The cost varies inversely with P, so that  

 (4)  

where ( )crC ,  is the cost of the pixel ),( cr  based on its value in the p-map. This ensures that pixels upon 

which there is less agreement contribute more to variability than those with higher agreement. The 

constant R is set to the number of raters; in the case of the LIDC, R = 4; k is determined 

experimentally. The second matrix is the variability matrix V (Equation 5) initialized with the values 
of 0 for pixels that correspond to )max(),( PcrP =  in the p-map. The rest of the pixels are not assigned a 

numeric value (NaN ). The matrix is then updated iteratively: for each pixel, the algorithm finds the 

lowest V as follows: 

 (5)  

where V  is the value of the current pixel ),( cr  in the variability matrix, C  is the cost map and v* is the 

lowest value of the eight pixels surrounding ),( cr  in the variability matrix. The matrix converges when 

the lowest values for all pixels have been found. All pixels in the variability matrix with value 
0),( =crP  from the p-map are assigned NaN , so they are ignored in subsequent calculations. 

The normalized variability index is defined as: 

 (6)  

where: 

 (7)  

In our experimental results section we will present the accuracy of our ensemble of classifiers with 

respect to certain ranges of the variability index. 

 

3.4.2. Kappa statistics as a measure of agreement between the CADc and the LIDC panel of experts 

 

To evaluate the performance of the ensemble of classifiers and its agreement with the panel of 

experts, given the absence of ground truth (pathology or follow-ups are not available for the LIDC 

dataset), we consider the following reference truths: a) nodules rated by at least one radiologist b) 

nodules rated by at least two radiologists, and c) nodules rated by at least three radiologists–where the 

class label for each nodule in all cases is determined as the median of all ratings (up to four) (Figure 5). 
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At this point in the study, we cannot evaluate the performance of the ensemble across individual 

radiologists since LIDC radiologists are anonymous even across nodules (radiologist 1 in one study is 

not necessary radiologist 1 in another study).  

Figure 5. Reference truths for the LIDC dataset. 

 
 

We will use the kappa statistic k (8) to evaluate the degree to which the panel of experts agrees with 

the computer output with respect to each semantic characteristic:  

 
(8)  

where p0 (Equation 9) stands for the observed agreement and pe (Equation 10) stands for the agreement 

that would occur by chance: 

 (9)  

 (10)  

where the agreement matrix A (Equation 11) consists of the number of correct classifications and 

misclassifications of every possible type (r = number of ratings): 

 (11)  

For instance, when the panel’s rating for a nodule for spiculation was 3 and the ensemble of 

classifier rated the spiculation for the same nodule with 2, then the value in the third column, second 

row in the agreement matrix will be incremented by 1. The cells of the main diagonal are incremented 

only if the expert panel rating agrees with the CAD prediction. Given that we are predicting multiple 

ratings per semantic characteristic instead of just a binary rating, we also investigated the use of the 
weighted kappa statistic wk  that takes into consideration the significance of a particular type of 

misclassification and gives more weight w (Equation 12) to a an error depending on how severe that 

error is: 
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(12)  

for any two ratings i and j. The observed agreement pow (Equation 13) and the agreement by chance pew 

(Equation 14) are calculated as: 

 (13)  

 (14)  

where the elements of the observed weighted proportions matrix O and expected weighted proportions 

matrix E are defined by (Equation 15) and (Equation 16), respectively: 

 (15)  

 (16)  

4. Results  

In this section we present the results of our proposed approach as follows. First, we present the 

accuracy results of Active-DECORATE with respect to balanced and unbalanced datasets, and 

“unseen” datasets - data that was not used by the ensemble to generate the classification rules. Second, 

we present the performance of Active-DECORATE in the variability index context in order to 

understand the effects of the nodule boundaries’ variability across radiologists. Third, we analyze the 

agreement between the panel of experts and the ensemble of classifiers both quantitatively using kappa 

statistics and visually using bar charts.  

 

4.1. Accuracy results versus LIDC data subsets 

 

By applying the active-DECORATE to the new LIDC dataset (Tables 4 and 5), the classification 

accuracy was on average 70.48% (Table 6) with an average number of iterations equal to 37 and 

average number of instances added at each iteration equal to 123. The results were substantially lower 

than on the previous available LIDC dataset (LIDC85–only 85 cases out of which only 60 cases were 

rated by at least one radiologist) for which the average accuracy was 88.62%.  

Looking at the ratings distributions of the training datasets (nodules on which at least three 

radiologists agree) for the LIDC and LIDC85 datasets (Table 5), we noticed that the distributions for 

the LIDC dataset were strongly skewed in the direction of one dominant class for almost each 

characteristic and therefore, produced unbalanced datasets when experimenting with our approach.  

 
Table 4. LIDC datasets overview; LIDC_B is a balanced data set. 

 LIDC LIDC85 LIDC_B 
Instances 2,204 379 912 
Nodules 914 149 542 

Cases/Patients 207 60 179 
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Table 5. Structure of the initial training data for all three datasets; L/U ratio represents the 

ratio between the labeled versus unlabeled data; ITI stands for initial training instances, N 

for the number of nodules and C for the number of cases. 

Dataset LIDC LIDC85 LIDC_B 

Characteristics 
L/U 
ratio 

#of 
ITI 

N C L/U 
ratio 

#of 
ITI  

N C L/U 
ratio 

#of 
ITI 

N C 

Lobulation 0.51 748 197 99 0.20 63 21 19 0.34 266 57 31 

Malignancy 0.30 503 133 73 0.19 61 22 17 0.23 503 121 67 

Margin 0.35 570 148 84 0.17 56 19 14 0.29 365 126 79 

Sphericity 0.30 516 135 80 0.29 85 27 20 0.23 477 131 77 

Spiculation 0.68 893 236 120 0.30 87 28 24 0.17 192 63 52 

Subtlety 0.31 519 137 87 0.30 88 27 22 0.23 296 77 46 

Texture 0.89 1040 277 123 0.46 120 35 24 0.23 173 36 11 

Average 0.45 684 180 95 0.26 80 25 20 0.25 324 87 51 

 

Table 6. Classification accuracies of the ensemble of classifiers built using decision trees; 
the number of classifiers (sizeC ) was set to 10 and number of artificially generated 

examples ( sizeR ) to 1; #of ITR stands for number of iterations of Active-DECORATE, and 

#of IAL stands for number of instances added to the training data later (those that did not 

reach the confidence threshold). 

 LIDC 
(80% Confidence level) 

LIDC85 
(60% Confidence level) 

LIDC_B 
(80% Confidence level) 

Characteristics 
#of 
ITR 

#of 
IAL 

Accuracy #of 
ITR 

#of 
IAL 

Accuracy #of 
ITR 

#of 
IAL 

Accuracy 

Lobulation 68 196 54.53% 10 1 81.00% 33 24 83.56% 

Malignancy 18 136 89.89% 8 1 96.31% 12 170 89.38% 

Margin 34 112 75.67% 5 8 98.68% 16 6 93.58% 

Sphericity 33 49 87.47% 9 9 91.03% 23 24 85.86% 

Spiculation 30 117 50.17% 15 13 63.06% 34 33 82.5% 

Subtlety 29 86 81.73% 7 4 93.14% 18 55 93.93% 

Texture 44 163 53.9% 9 0 97.10% 11 61 95.83% 

Average 36.6 122.7 70.48% 9 5.14 88.62% 21 53 89.23% 

 

To validate the effect of the unbalanced data on the accuracy of the classifier, we evaluated further 

the ensemble of classifier on another balanced dataset. The second subset (LIDC_B) was formed by 

randomly removing nodules from the most dominant class/rating such that the most dominant class has 

almost the same number of nodules as the second most dominant class. 

Furthermore, when comparing our proposed approach with the traditional decision trees applied as 

single classifiers per characteristic, our approach notably outperforms the traditional approach by 24% 

to 45% accuracy, depending on the characteristics of the data subsets (Table 7).  

While all of the data instances were involved in the creation of both the decision trees and the 

ensemble from Tables 6 and 7, we also wanted to test further the performance of our algorithm on 

“unseen” data. We reserved 10% of our data set to be completely unavailable (“unseen”) for the 

creation of the classifiers. This 10% was chosen to be similar to the entire data set with respect to 
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levels of agreement and the distribution of semantic ratings. Further, if a patient had multiple nodules 

they were all included in the reserved 10%. 

Table 7. Classification accuracies of decision trees and an ensemble of decision trees on  

all datasets. 

 Decision trees Ensemble approach 
Characteristics LIDC LIDC85 LIDC_B LIDC LIDC85 LIDC _B 
Lobulation 49.4% 27.44% 38.52% 54.53% 81.00% 83.56% 
Malignancy 39.11% 42.22% 38.88% 89.89% 96.31% 89.38% 
Margin 38.56% 35.36% 39.56% 75.67% 98.68% 93.58% 
Sphericity 34.21% 36.15% 32.21% 87.47% 91.03% 85.86% 
Spiculation 59.43% 36.15% 59.16% 50.17% 63.06% 82.5% 
Subtlety 38.11% 38.79% 39.51% 81.73% 93.14% 93.93% 
Texture 66.74 53.56% 60.42% 53.9% 97.10% 95.83% 
Average 46.51% 38.52% 44.04% 70.48% 88.62% 89.23% 

 
Costs for ratings’ missclassifications 1 2 3 4 5 

1 0 0.5 1 1.5 2 
2 0.5 0 0.5 1 1.5 
3 1 0.5 0 0.5 1 
4 1.5 1 0.5 0 0.5 
5 2 1.5 1 0.5 0 

 
Table 8. Classification accuracies of Active-Decorate on original (90%) and reserved  

(10%) datasets. 

 Cross-validation on 
training data 

Validation of testing data 

DT AD DT AD # of 
Patients 

# of 
Nodules 

# of 
Instances 

Lobulation 49.39% 54.52% 18.60% 36.41% 87 19 209 
Malignancy 39.44% 90.65% 31.00% 35.75% 84 19 213 
Margin 38.54% 75.62% 36.11% 46.46% 97 22 217 
Sphericity 33.89% 86.65% 14.26% 57.49% 84 19 226 
Spiculation 60.24% 50.85% 33.53% 34.92% 84 19 237 
Subtlety 38.87% 83.35% 25.14% 15.03% 82 18 248 
Texture 67.26% 54.32% 40.88% 47.46% 95 21 193 

Average 46.80% 70.85% 28.50% 39.07% 87 19 220 

 

Not surprisingly, when tested on a set of data that had never been viewed, both the single decision 

tree and our ensemble produced lower accuracies. However, one of the main features of the  

Active-DECORATE algorithm is its ability to dynamically adjust the ensemble when fed with newly 

available instances. In other words, the ensemble will not be generated just once, and then used in 

immutable form for classification of every new instance, but rather learn from every new instance it 

classifies, every time modifying the classification rules accordingly. Furthermore, associating different 
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costs to different types of misclassifications (for example, misclassifying an instance as 3 when it is 

actually a 1 will receive a higher cost than when misclassifying it as 2 and a lower cost than when 

classifying it as 4), improves the results on the evaluation dataset by more than 20% (Table 9). This is 

done by the application of a cost matrix to the misclassification matrix before evaluating accuracy. In 

our case, we used the following cost matrix: 

 

Table 9. Classification accuracies for original (90%) and reserved (10%) subsets after 

applying costs for degree of misclassification. 

 AD (original 
data) 

AD (original data) 
after applying cost 

AD (reserved 
data) 

AD (reserved data) 
after applying costs 

Lobulation 54.52% 67.99% 36.41% 61.48% 
Malignancy 90.65% 93.65% 35.75% 62.91% 
Margin 75.62% 84.75% 46.46% 70.74% 
Sphericity 86.65% 90.60% 57.49% 75.44% 
Spiculation 50.85% 58.95% 34.92% 49.79% 
Subtlety 83.35% 89.37% 15.03% 51.01% 
Texture 54.32% 70.51% 47.46% 63.47% 

Average 70.85% 79.40% 39.07% 62.12% 

 

Furthermore, we investigated the influence of the type of classifier on the accuracy of single 

classifiers and our proposed ensemble of classifiers approach. Tables 10 and 11 show how single 

classifiers compare to ensembles, for both decision trees and support vector machines (In the case of 

the ensembles, decision trees and support vector machines serve as the base classifier). In average, the 

performance of an ensemble always exceeds the performance of a single classifier, and the 

performance of the support vector machine almost always exceeds the performance of the decision 

tree. In particular, the support vector machine does better on the reserved data set, meaning the support 

vector machine generalizes better than the decision tree. 

Table 10. Classification Accuracy of decision trees on full, original and reserved data sets 

(single classifier vs. ensemble of classifiers). 

 

DT DT ensemble 

full original reserved full original reserved 
Lobulation 49.40% 49.39% 18.60% 54.53% 54.52% 36.41% 
Malignancy 39.11% 39.44% 31.00% 89.89% 90.65% 35.75% 
Margin 38.56% 38.54% 36.11% 75.67% 75.62% 46.46% 
Sphericity 34.21% 33.89% 14.26% 87.47% 86.65% 57.49% 
Spiculation 59.43% 60.24% 33.53% 50.17% 50.85% 34.92% 
Subtlety 38.11% 38.87% 25.14% 81.73% 83.35% 15.03% 
Texture 66.74% 67.26% 40.88% 53.90% 54.32% 47.46% 

Average 46.51% 46.80% 28.50% 70.48% 70.85% 39.07% 
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Table 11. Classification Accuracy of support vector machines on full, original and reserved 

data sets (single classifier vs. ensemble of classifiers). 

 SVM SVM ensemble 

 full original reserved Full original reserved 
Lobulation 60.02% 63% 55.02% 67.64% 69.87% 66.98% 
Malignancy 50.45% 51.28% 36.15% 77.49% 78.16% 62.91% 
Margin 45.68% 45.69% 17.51% 63.83% 61.9% 37.32% 
Sphericity 42.96% 42.16% 33.18% 64.15% 64.45% 53.98% 
Spiculation 69.23% 69.54% 56.54% 80.8% 80.42% 59.49% 
Subtlety 45.64% 45.24% 24.19% 66.28% 66.41% 54.83% 
Texture 73.69% 75.98% 57.51% 88.92% 89.06% 69.94% 

Average 55.38% 55.78% 40.01% 72.73% 72.89% 57.92% 

 

4.2. Accuracy results versus variability index 

 

The variability index was calculated for all LIDC nodules, specifically on those image instances that 

represented the slices containing the largest area of the nodule. The five number summaries for the 

distribution of the variability index had the following values: min = 0, first quartile (Q1) = 1.3165, 

median = 1.9111, third quartile (Q3) = 2.832, max = 85.5842. Then we calculated the five-number 

summary of the variability index for two subsets: the misclassified instances and the correctly 

classified instances with respect to each characteristic. Regardless of the characteristic, we learned that 

those instances with low variability index (<= 1.58) were correctly classified by the ensemble of 

classifiers and all those instances with high variability index (>= 4.95) were misclassified by the 

ensemble of classifiers. Given that variability index values greater than 5.12 (= Q3 + 1.5 × (Q3 – Q1)) 

indicate potential outliers in the boundary delineation, we conclude that the ensemble of classifiers is 

able to correctly classify instances with large variability in the nodule boundaries.  

 

4.3. Ensemble of classifiers’ predictions versus expert panel agreement 

 

Furthermore, we measured the agreement between the panel of experts and our ensemble of 

classifiers using both kappa and weighted kappa statistics for different levels of agreement. The results 

(Table 12) show that higher levels of agreement yield higher kappa statistics. Furthermore, we noticed 

that weighted kappa statistics better captured the level of agreement than the non-weighted kappa 

statistic across different reference truths in the sense of being more consistent when going from one 

level of agreement to another. With the exception of spiculation and texture, the weighted kappa 

statistics for all the other five characteristics for the entire LIDC dataset showed that the ensemble of 

classifiers was in ‘moderate’ agreement or better (‘substantial’ or ‘almost perfect’) with the LIDC 

panel of experts when there were at least three radiologists who agreed on the semantic characteristics. 

Furthermore, when analyzing these five semantic characteristics with respect to the other two reference 

truths, we learned that the ensemble of classifiers was in ‘fair’ or ‘moderate’ agreement with the panel 

of experts.  
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Table 12. Kappa statistics of different agreement level subsets of a new LIDC dataset. 

Agreement level At least 3 At least 2 At least 1 
Characteristic K K w K K w K K w 

Lobulation 0.10 0.4 0.06 0.27 0.06 0.24 
Malignancy 0.82 0.89 0.38 0.63 0.28 0.55 

Margin 0.45 0.59 0.28 0.39 0.22 0.29 
Sphericity 0.7 0.78 0.3 0.46 0.23 0.4 
Spiculation 0.05 0.27 0.04 0.24 0.04 0.22 

Subtlety 0.51 0.66 0.35 0.48 0.26 0.39 
Texture 0.03 0.2 0.05 0.19 0.05 0.18 

 

Figures 6–12 present a visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions. In this visualization, we were interested not only in the “absolute” accuracy of the 

classifier, but also in how the classifier did with regard to rater disagreement. For each semantic 

characteristic, we have displayed four graphs. Each one of these graphs corresponds to a distinct 

number of raters. That is, we show one graph for nodules rated by one radiologist (upper left graph in 

each figure), one graph for nodules rated by two radiologists (upper right graph in each figure), one 

graph for nodules rated by three radiologists (lower left graph in each figure) and one graph for nodules 

rated by four radiologists (lower right graph in each figure). In each graph, we have a bar 

corresponding to the number of radiologists which our algorithm predicted correctly. (Thus the graphs 

with more radiologists have more bars.) The height of the bars shows how many nodules there were in 

each level of prediction success. Looking at just the height of these bars, we can see that our classifier’s 

success was quite good with respect to most of the semantic characteristics – these characteristics 

present very right-skewed distributions. Lobulation, spiculation and texture present more uniform 

distribution, meaning our classifier was less successful at predicting the radiologists’ labels. We 

present one further visualization in these graphs–each bar is gray-coded to indicate the radiologists’ 

level of agreement among themselves. (Thus, for example, the upper left graph, one radiologist, has no 

gray-coding, as a radiologist will always agree with himself.) This gray-coding allows us to see that the 

approach is much better at matching radiologists when the radiologists agree with themselves. While 

this, in itself, is not surprising, it does reveal that for the troublesome characteristics (lobulation, 

spiculation and texture) the algorithm does a very good job when we look only at higher levels of 

radiological agreement.  
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Figure 6. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Lobulation). 

 

 
 

Figure 7. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Malignancy).  

 

 



Algorithms 2009, 2                            

 

 

1494

Figure 8. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Margin).  

 

 

Figure 9. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Sphericity). 

 

 



Algorithms 2009, 2                            

 

 

1495

Figure 10. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Spiculation). 

 

 

Figure 11. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Subtlety).  
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Figure 12. Visual overview of the ensemble of classifiers’ agreement with the panel of 

experts’ opinions (Texture).  

 

 
 
5. Conclusions  
 

In this paper, we presented a semi-supervised learning approach for predicting radiologists’ 

interpretations of lung nodule characteristics in CT scans based on low-level image features. Our 

results show that using nodules with a high level of agreement as initially labeled data and 

automatically labeling the data on which disagreement exists, the proposed approach can correctly 

predict 70% of the instances contained in the dataset. The performance represents a 24% overall 

improvement in accuracy in comparison with the result produced by the classification of the dataset by 

classic decision trees. Furthermore, we have shown that using balanced datasets, our approach 

increases its prediction accuracy by 45% over the classic decision trees. When measuring the 

agreement between our computer-aided diagnostic characterization approach and the panel of experts, 

we learned that there is a moderate or better agreement between the two when there is a higher 

consensus among the radiologists on the panel and at least a ‘fair’ agreement when the opinions among 

radiologists vary within the panel. We have also found that high disagreement in the boundary 

delineation of the nodules also has a significant effect on the performance of the ensemble of 

classifiers. 

In terms of future work, we plan to explore further (1) different classifiers and their performance 

with respect to the variability index in the expectation of improving our performance, (2) 3D features 

instead of 2D features so that we can include all the pixels in a nodule without drastically increasing 

the image feature vector size, and (3) integration of the imaging acquisition parameters in the ensemble 

of classifiers so that our algorithm will be stable in the face of images obtained from different models 

of imaging equipment. In the long run, it is our aim to use the proposed approach to measure the level 
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of inter-radiologist variability reduction by supplying our CAD characterization approach in between 

the first and second pass of radiological interpretation. 
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Appendix 
 

Image feature name Image feature calculation 

 

For all haralick features for each combinations of directions (0, 45, 

90, 135) and distances (1, 2, 3, 4) generate co-occurrence matrix for 

given image (nodule with background) and calculate 11 descriptors 

as described below. Afterwards average each descriptor across all 

direction/distance pairs. M and N represent resolution vector at row 
and column respectively. 2 2

r c, , ,r cµ µ σ σ  are the mean and variance of 

row and column. 

clusterTendency  

contrast  

correlation  

energy  

entropy  

homogeneity  

inverseVariance  

maximumProbability  

sumAverage  

thirdOrderMoment  

variance  
Gabormean_0_03 Each of the Gabor responses is generated by building a Gabor filter 

of size 9x9 and convoluting it with the processed image. Filter is build 

as follows: 

 

 

GaborSD_0_03 

Gabormean_0_04 

GaborSD_0_04 

Gabormean_0_05 
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GaborSD_0_05  

 
 

 
 

 
 

 
 

Where: 

 - width 
 - height 

 - Width of Gaussian 

 - Spatial aspect ratio. Should be .5 

 – Distance 

 - Direction 

 

 

4 directions (00, 450, 900, 1350) and 3 distances (.3, .4, .5) give us 12 

response images in total for each of them we get 2 values - response’s 

mean and standard deviation 

Gabormean_45_03 

GaborSD_45_03 

Gabormean_45_04 

GaborSD_45_04 

Gabormean_45_05 

GaborSD_45_05 

Gabormean_90_03 

GaborSD_90_03 

Gabormean_90_04 

GaborSD_90_04 

Gabormean_90_05 

GaborSD_90_05 

Gabormean_135_03 

GaborSD_135_03 

Gabormean_135_04 

GaborSD_135_04 

Gabormean_135_05 

GaborSD_135_05 

 

Markov0 r represents pixel location on the image, u is the size of estimation 
window, j = 1, 2, 3, 4 and  stands for specific direction. 

Calculate 4 features corresponding to 4 different directions (00, 450, 

900, 1350) 

 
And the variance as 5th feature 

 

Markov1 

Markov2 

Markov3 

Markov4 

area Number of pixels inside the outline 

convexArea Number of pixels inside the outline’s convex hull 

circularity  
perimeter Perimeter of the outline in pixels 

convexPerimeter Perimeter of the outline’s convex hull in pixels 

roughness  

equivDiameter  
majorAxisLength  
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Where: a,b  are the distances from each focus to any point on the 

ellipse 

minorAxisLength 

 
Where: f  is the distance between foci 

a,b  are the distances from each focus to any point on the ellipse 

elongation  

compactness  

eccentricity   

solidity   

extent  
radialDistanceSD Standard deviation of radial distances of all pixels of the nodule 

minIntensity Minimal intensity of the nodule 

maxIntensity Maximum  intensity of the nodule 

meanIntensity Average  intensity of the nodule 

SDIntensity Standard deviation of   intensity of the nodule 

minIntensityBG Minimal intensity of the nodule’s background 

maxIntensityBG Maximum  intensity of the nodule’s background 

meanIntensityBG Average  intensity of the nodule’s background 

SDIntensityBG Standard deviation of   intensity of the nodule’s background 

intensityDifference 

 
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


