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Abstract. Producing consistent segmentations of lung nodules in CT scans is a 
persistent problem of image processing algorithms. Many hard-segmentation 
approaches are proposed in the literature, but soft segmentation of lung nodules 
remains largely unexplored. In this paper, we propose a classification-based 
approach based on pixel-level texture features that produces soft (probabilistic) 
segmentations. We tested this classifier on the publicly available Lung Image 
Database Consortium (LIDC) dataset. We further refined the classification 
results with a post-processing algorithm based on the variability index. The 
algorithm performed well on nodules not adjacent to the chest wall, producing a 
soft overlap between radiologists’ based segmentation and computer-based 
segmentation of 0.52. In the long term, these soft segmentations will be useful 
for representing the uncertainty in nodule boundaries that is manifest in 
radiological image segmentations. 
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1 Introduction 

Most lung cancer treatment methods rely on early detection of malignant tumors. 
An effective way of measuring the malignancy of a lung nodule is by taking repeated 
computed tomography (CT) scans at intervals of several months and measuring the 
change in the nodule’s volume[1]. However, the process of segmenting the nodule 
consistently is challenging, both for human readers and automated algorithms. 

One of the greatest difficulties facing automatic lung nodule segmentation 
algorithms is the absence of a reliable and unambiguous ground truth. Many 
algorithms are trained on data from the Lung Image Database Consortium (LIDC)[2], 
which provides a reference truth based on the contours marked by four radiologists.  
Armato et al. explored the possible reference truths that may be constructed from the 
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sets of nodules detected by different radiologists on the same CT scans, and found 
significant variations[3]. This alone can greatly affect the results of a detection 
algorithm. The same is true of segmentation. Siena et al. measured the variability of 
radiologist contours in LIDC data and found that there are certain images for which 
disagreement is extremely high[4]. In such cases, it may be difficult to find a reliable 
reference truth.  

The vast majority of lung nodule segmentation algorithms in the past have 
produced hard (binary) segmentations. Many methods for this kind of classification 
exist, but it is difficult to compare their effectiveness because they are quantified 
differently. For instance, Liu et al used the popular level set technique, though they 
did not provide an overall quantitative measure of their algorithm’s accuracy[5]. 
Demeshki et al employed region growing and fuzzy connectivity and evaluated 
segmentation results subjectively with the help of radiologists[6]. Xu et al used 
dynamic programming to segment nodules with radiologist-defined seed points, 
though they did not test their algorithm on a dataset[7]. Q. Wang et al’s and 
publication on dynamic programming[8] and J. Wang et al’s paper on a 3D 
segmentation algorithm[9]  evaluated their results by calculating the overlap of 
computer-generated segmentations against a ground truth. Q. Wang et al obtained 
overlaps of 0.58 and 0.66 on two datasets, and J. Wang et al had overlaps of 0.64 and 
0.66, on two different datasets. Comparison of different methods is further 
complicated by the use of different datasets and varying methods of constructing the 
reference truths. The variation in the reference truth, which is usually produced by 
experienced radiologists, indicates that there may be more than one way to correctly 
segment lung nodules, so a probabilistic (soft) segmentation, which preserves 
variation in the data, may be a more natural way to segment nodules. 

Soft segmentation has been applied to different areas of medical image processing, 
including segmentations of the kidneys[10] and magnetic resonance images of the 
brain[11]. However, little work has been done on soft segmentations of lung nodules. 
Ginneken produced a soft segmentation of the 23 nodules in the first version of the 
LIDC dataset using a region growing technique[12]. In this paper, we propose a new 
method for soft lung nodule segmentation that investigates the power of texture-based 
image features in segmenting lung nodules. 

2 Materials and Methods 

Our approach was to train a classifier using texture and intensity features, and then 
use it to classify pixels of interest. After this initial segmentation, we refined our 
results using a post-processing algorithm (Variability Index (VI)[4] Trimming) that 
trims those portions of the segmentation that appear to create the most variation in the 
data. In the next five sections, we explain our proposed soft segmentation approach.  
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2.1 LIDC Dataset, Probability Maps, and Data Preprocessing 

The LIDC dataset is an expanding collection of CT scans analyzed at five US 
academic institutions in the effort to facilitate the testing of computer-aided diagnosis 
(CAD) systems. At the time of this study, the second version of the dataset, LIDC85, 
was available, containing 60 series of chest CT scans representing 149 nodules. Each 
scan was presented separately to 4 radiologists, who provided contours for all nodules 
they found between 3 and 30 mm. Each nodule, therefore, was outlined by up to 4 
radiologists. Given that we are investigating a soft segmentation approach, and 
therefore several boundaries per slice were needed to train and test our approach, we 
created our dataset as a subset of the LIDC85: 39 nodules on 326 images, selected 
based on the criterion that each would contain at least one 2D slice with 4 contours; 
264 were in this category. The other 62 images were the remaining slices for the 39 
nodules that contained fewer than 4 contours, as radiologist opinion may have 
differed with regard to the superior and inferior slices of a nodule. 

The contours produced by the radiologists were translated into probability maps for 
analysis (Fig 1 A). In a probability map (p-map), each pixel of the image is assigned a 
probability of belonging to the structure of interest (a lung nodule, in our case). Since 
up to four radiologists annotated each nodule, each pixel can take on 5 discrete 
probability values (0, 0.25, 0.50, 0.75, and 1), depending on the number of 
radiologists that included that pixel within their contours. In our algorithms, these 
probability values were replaced with (0, 1, 2, 3, and 4), which indicate the number of 
radiologists that included the pixel.  

 
Fig. 1. Important terms (A) Radiologist outlines for a nodule in the LIDC dataset (top) and the 
corresponding p-map (bottom), where the level of probability is indicated by the color, from 
white (0) to the dark grey(1). (B) A computer generated p-map produced for the nodule in A 
using a decision tree classifier, overlaid on the CT scan (top) and displayed similarly to the 
radiologist p-map (bottom). (C) Thresholded p-maps for the computer-generated p-map in B 
(bottom), 0.25 (leftmost) to 1 (rightmost), and their corresponding contours (top). 

Due to the varying properties and settings of the different scanners used to collect 
the LIDC data, pixel intensity histograms were not consistent on a series-to-series 
basis. At least four brands of scanners were used, including ones from GE, Toshiba, 
Siemens, and Philips, and certain settings and data display options were highly 
variable. The most significant variable that defined the histograms was the rescale 
intercept b used in the series of scans. In order to make intensity values comparable 
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across images, we modified all intensity histograms by shifting their rescale intercept 
to -1024 (the most common value). 

When training the classifier, we selected 10,000 pixels for the nodule class and 
10,000 pixels for the non-nodule class. The pixels were selected from the radiological 
p-maps. Every pixel was assigned a value 0-4, indicating the number of outlines that 
included it, so that pixels selected by four radiologists would have a value of four. 
Training pixels were selected only from those slices of the 39 nodules that contained 
outlines from four radiologists.  

 
Fig. 2. An example of a p-map constructed from radiologists’ outlines of a nodule. The shades 
of gray represent probabilities 0, 0.25, 0.5, 0.75, and 1 

In the selection of random points, the non-nodule pixels were those that lay outside 
of the p-map, but inside a rectangular box that included the nodule and added 8 pixels 
in all four directions (Fig. 2). This 8-pixel box was selected because the high running 
time of certain feature calculation algorithms did not allow for a larger one, and 
anything smaller would have prevented us from evaluating the algorithm’s 
performance on structures surrounding the nodule. The nodule pixels were selected 
from the 0.25, 0.50, 0.75, and 1 p-map areas. 

2.2 Feature Extraction 

Once random training pixels were selected, we performed feature extraction on the 
pixel level. We calculated the following features in a 9x9 neighborhood around the 
pixel of interest: intensity (including the intensity of the pixel of interest, as well as 
the minimum, maximum, mean, and standard deviation of the intensities in the 
neighborhood), Gabor filters, and Markov Random Fields.  

To extract Gabor and Markov features, we used an open-source implementation of 
a feature extractor called BRISC[13]. Gabor filters are harmonic functions modulated 
by a Gaussian function. As per the algorithm, 12 Gabor filters were used: 
combinations of four orientations (0, π/4, π/2, 3π/4 θ) and three frequencies (0.3, 0.4, 
0.5 1/λ). A Markov random field is a matrix of random variables that exhibit a 
Markov property with respect to their neighbors. In the BRISC implementation, four 
Gaussian Markov random field parameters (corresponding to four orientations 
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between two neighboring pixels – 0o, 45o, 90o, 135o) and their variance were 
calculated.  

2.3 Decision Tree Classification 

We built our classifier using the Classification and Regression Trees (C&RT) 
binary decision tree provided by SPSS. We trained the classifier on 10,000 non-
nodule and 10,000 nodule pixels, which represented 3 percent of the entire pixel 
dataset. We then used the result to classify all the 525,084 pixels that lay within the 8-
pixel offset box described in Fig 2. The classifier assigned each pixel a continuous 
probability (CP’) from 0 to 1 of belonging to the nodule. We constructed computer-
generated p-maps (Fig. 1 B) by binning these probabilities to make them comparable 
to radiologist p-maps during analysis of the data. We found discrete probability values 
CP as follows: 
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where 𝐶𝑃����(1,0.75,0.50,0.25,0) is the average probability assigned by the decision tree to all 
training set pixels originating from the respective p-map area and 𝐶𝑃′ is the 
probability value assigned by the classifier to the specific pixel in the test set. For 
instance, if the average probability assigned by the decision tree to the pixels 
originating from p-map area 1 is 0.92, and the average probability assigned to those 
originating from p-map area 0.75 is 0.76, any pixel above 0.84 would be assigned the 
value of 1 on the p-map by the algorithm. We attempted different methods for finding 
the thresholds, including hard-coding values, but we have found that this approach 
performs best.  

2.4 Post-processing 

To improve the results of our initial segmentation, especially with regard to 
systematic mistakes and over-segmentation, we used a post-processing algorithm 
called VI Trimming, which requires a seed point selected from the p-map generated 
by the classifier.  

First, we constructed thresholded p-maps (Fig. 1C) of our soft segmentations for 
each of the probability areas (when a scan contained multiple nodules, each of the 
segmentations was treated separately when finding seed points). These p-maps were 
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then passed through a built-in Matlab implementation of a Savitzky-Golay Filter[14] 
This filter reduces the impact of noise in an image by moving a frame of a specified 
size over each column of an image and performing a polynomial regression on the 
pixels in that frame. The value of each pixel in the frame is then replaced by its value 
as predicted by the polynomial. We used a filter with a polynomial order of 3 and 
frame size of 7. 

After noise reduction, we produced contours of each of the thresholded p-maps and 
found the centroid of the most circular contour on the highest-valued p-map, ignoring 
noise.  This centroid was the seed point for the image. The VI Trimming algorithm 
began with the seed point for the image, then iteratively increased the area around it, 
starting with a 3x3 square, then growing to 5x5, etc. This square was filled with the 
computer-generated p-map. For each p-map square, a variability matrix was 
calculated according to the algorithm developed by Siena et al[4].  

Once calculated, the variability matrix was used to generate a pointer matrix. The 
pointer matrix is a border that surrounds the outer edge of the variability matrix. Each 
pixel in the pointer matrix indicates how many variability matrix pixels adjacent to it 
are below the selected VI threshold. We have found 2 to be the optimal VI threshold 
value for our purpose. All pixels outside of a 0 in the pointer matrix are reset to 0 in 
the post-VI Trimming p-map, regardless of their original probabilities. This ensures 
that the nodule region that contained the seed points is kept in the p-map, while other 
regions are eliminated. This is the key step for removing misclassified chest wall 
regions, given that they are separated by at least a small gap from the nodule itself. 
The matrix stops growing when all the pixels in the pointer matrix are 0.  

2.5 Evaluation of the Segmentation 

We evaluated the quality of our segmentations using two metrics: the soft 
overlap[12] and the variability index[4] (not to be confused with VI Trimming, which 
is based on the variability index). The soft overlap is a measure of agreement between 
two soft segmentations. Values range between 0 for completely dissimilar 
segmentations, and 1 for identical segmentations. In our case, we compare our 
computer-generated p-maps against radiologist-generated ones.  

It is calculated as follows: 
 
 𝑆𝑂 =

∑ min(𝑅𝑃𝑛(𝑖, 𝑗),𝐶𝑃𝑛(𝑖, 𝑗))(𝑖,𝑗)

∑ max(𝑅𝑃𝑛(𝑖, 𝑗),𝐶𝑃𝑛(𝑖, 𝑗))(𝑖,𝑗)
∀𝑛𝜖𝐼 (2) 

where CPn (i,j) is the p-map value for pixel (i,j) in the computer-generated p-map of 
image n, and  RPn (i,j) is the p-map value for the same pixel in the radiologist-
generated p-map. 

The variability index is a metric for evaluating the variability of a soft 
segmentation. Given a probability map, it takes into account both the number of 
pixels with probability below 1, and the shape of each probability area. We used the 
method described in the VI Trimming section to find the variability matrix for each 
image. Then, we calculated the variability index VI for each image[4]: 
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𝑉𝐼 =  

∑ 𝑉(𝑖, 𝑗)(𝑖,𝑗)

∑ 𝑃(𝑖,𝑗)(𝑖,𝑗)
  

(3) 
 
where P(i,j) denotes RP(i,j) or CR(i,j), depending on whether the VI is calculated for 
radiologist or computer segmentations.  

3 Results 

We used cross-validation on the training set and obtained the lowest risk estimate 
(variance about the mean of the node) of 0.06 for a decision tree with a depth of 10 
and 53 terminal nodes. Before post-processing, our classifier had a median SO of 0.49 
on the 39 nodules in our subset of the LIDC85 (Fig. 3A). The variability index 
distribution was highly right-skewed, indicating a few outliers with very high 
variability (Fig. 3B). The median VI was 4.50. Using the Inter-quartile range 
criterion, there were 42 possible outliers, specifically all images with VI above 16.88. 

To improve these results, we used VI Trimming. The median SO rose to 0.52 (Fig. 
3C). The large number of nodules with an SO lower than 0.1 are a result of 
misclassification on specific groups of nodule slices. Specifically, the classifier did 
not perform well on superior and inferior slices of each nodule, and nodule slices in 
contact with the chest wall. Furthermore, a failure to select good seed points resulted 
in lower post-VI Trimming SO for certain nodule slices.  

After VI Trimming, the median variability index for all images decreased to 2.61. 
There were 20 outliers, which were all images with VI above 12.09 (Fig. 3D). For 
examples of VI Trimming results, refer to Fig. 4. 

 
Fig. 3. Soft overlaps and variability indices before (A, B) and after (C, D) VI Trimming 

In addition to calculating the variability index for all images, we found it 
specifically for those that were post-processed with VI Trimming (221 images). For 

A B 

C D 
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these images, the median VI decreased from 3.63 to 2.01. More significantly, the 
number of outliers in this case decreased from 28 to 18, indicating that VI Trimming 
is useful for minimizing the number of highly variable outliers. 

 For a summary of the results, see Table 1. 

Table 1. Summary of results before and after post-processing 

 Algorithm only Algorithm plus VI Trimming 
Soft Overlap 0.49 0.52 
A ratio for 0.25-thresholded p-map 0.48 0.55 
Variability Index 4.50 2.61 

4 Discussion 

Our results indicate that decision tree classifiers trained on Gabor, Markov, and 
intensity image features can be used to produce soft segmentations of lung nodules. 
The classifier successfully distinguished nodules from adjacent blood vessels (Fig. 4 
E-F) in the majority of cases, but it failed to differentiate between chest wall and 
nodule pixels (Fig. 4 A, C). The best way to improve upon these results is to include 
lung segmentation in the pre-processing step, which we plan to do in future work. 
Once lung segmentation is performed, we will also run our algorithm on all pixels 
within the lung, instead of only ones inside the 8-pixel offset box. 

We compared our soft segmentation results against another soft lung nodule 
segmentation algorithm. Ginneken’s region-growing algorithm produced a mean soft 
overlap of 0.68 for 23 nodules. Although the soft overlaps for these nodules are 
higher than ours, the algorithm described in Ginneken’s paper included a pre-
processing lung segmentation step, which makes the comparison more difficult. 
Additionally, Kubota et al’s work on nodule segmentation shows a decrease in 
performance in moving from the first to the second LIDC dataset, on which they 
obtained 0.69 and 0.59 mean overlaps, respectively[15]. Kubota et al conclude that 
this is due to the second dataset’s thicker slices and some subtle nodules, which also 
complicates the comparison of our results with those of Ginneken. 

Due to the possible bias of selecting training pixels from the same nodules that the 
testing set came from, we also applied our algorithm to four additional nodules from 
the most recent LIDC dataset. These nodules were not involved in producing the 
classifier, so they ensured that there was no such bias when they were segmented. We 
obtained an SO of 0.44 for these nodules. This may have resulted from the higher 
variability in scanning methods in the most recent LIDC, which results in more 
variable data. In the future, we plan to run our algorithm on this version of the LIDC 
and investigate the change in results. 
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Fig. 3. Soft segmentations before and after VI Trimming. (Yellow – 0.25, blue – 0.5, green – 
0.75, red – 1). (A) A nodule next to the chest wall before post-processing. The classifier could 
not distinguish the chest wall from the nodule. (B)  The same nodule after VI Trimming. The 
chest wall has been removed. (C) VI Trimming was unable to correct the classifier’s errors in 
this case because the nodule is too close to the chest wall. (D) The VI Trimming had no effect 

on this nodule because the classifier produced a good segmentation. (E-F) The classifier is good 
at distinguishing nodules from blood vessels, even without VI Trimming. 
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