
A study on the effect of CT imaging acquisition parameters on lung nodule 
image interpretation 

Shirley J.Yu1, Joseph S.Wantroba2, Daniela S. Raicu2, Jacob D. Furst2, David S. Channin3, Samuel 
G. Armato III4 

1University of Southern California, 2DePaul University, 3Northwestern University, 4University of 
Chicago 

 
Abstract 

Most Computer-Aided Diagnosis (CAD) research studies are performed using a single type of Computer 
Tomography (CT) scanner and therefore, do not take into account the effect of differences in the imaging acquisition 
scanner parameters. In this paper, we present a study on the effect of the CT parameters on the low-level image features 
automatically extracted from CT images for lung nodule interpretation.  The study is an extension of our previous study 
where we showed that image features can be used to predict semantic characteristics of lung nodules such as margin, 
lobulation, spiculation, and texture.  Using the Lung Image Data Consortium (LIDC) dataset, we propose to integrate the 
imaging acquisition parameters with the low-level image features to generate classification models for the nodules’ 
semantic characteristics. Our preliminary results identify seven CT parameters (convolution kernel, reconstruction 
diameter, exposure, nodule location along the z-axis, distance source to patient, slice thickness, and kVp) as influential in 
producing classification rules for the LIDC semantic characteristics. Further post-processing analysis, which included 
running box plots and binning of values, identified four CT parameters: distance source to patient, kVp, nodule location, 
and rescale intercept. The identification of these parameters will create the premises to normalize the image features 
across different scanners and, in the long run, generate automatic rules for lung nodules interpretation independently of 
the CT scanner types.   

1. Introduction 

Research studies on CAD systems often use data from a single CT scanner. However, CAD systems trained on 
one type of CT scanner may not apply to images from a different manufacturer’s CT scanner. Our research investigates 
differences between CT scanners and the effect of CT parameters on low-level image features automatically extracted 
from CT lung images. This study is an extension of our previous work1 on semantic mapping in which we developed 
classification models to semantically interpret lung nodules based on low-level image features. Semantic mapping is 
important in modeling the relationship between image features and radiologist-defined semantic characteristics to 
understand the diagnosis decision making process instead of just the final decision of malignant versus benign.  In this 
paper, we investigate the robustness of the semantic mappings with respect to the different CT scanner parameters used 
for the acquisition of the LIDC dataset3. While there are several research studies on the influence of the imaging 
acquisition parameters with respect to nodule detection algorithms2 , nodule volume estimations4,5, and image quality6,7, 
the study presented in this paper is unique by addressing the influence of the CT scanner parameters on the automatic 
interpretation of lung nodules.  

2. Methods 
2.1 Data Collection  
 
The dataset consists of lung images provided by the NIH/NCI LIDC Consortium formed by five institutions. It contains 
85 cases, out of which 60 cases have 149 distinct lung nodules with diameter larger than 3mm. The nodules are marked 
by up to four radiologists with respect to nine semantic characteristics: calcification, internal structure, lobulation, 
malignancy, margin, sphericity, speculation, subtlety, and texture. We do not consider calcification and internal structure 
because all the nodules are given the same ratings of ‘no calcification’ and ‘soft tissue’ respectively. Therefore, our 
methodology focuses on seven LIDC semantic characteristics, each one of them rated on a scale from 1 to 5.  

In terms of the low-level image features used to encode the lung nodule image content, we use the 64 image features 
previously extracted in our work1 and summarized in Table 1 as shape, size, intensity, and texture feature types. The 
features for each nodule are coupled with the imaging acquisition parameters found in the DICOM header of the 
corresponding nodule image.  Given the large number of parameters (103) and the fact that many of them have missing 



values (not all manufacturers record values for certain parameters), we reduced the number of parameters from 103 to 14 
by eliminating parameters with missing values or those that are unique identifiers. Table Height was additionally 
eliminated because it contains unreasonable outlier values. Manufacturer and Manufacture Model Name were eliminated 
as confounding variables that prevent more subtle differences in other CT parameters from appearing. Because Exposure 
Time and X-ray Tube Current are captured in the Exposure attribute (defined as the product of Exposure Time and Tube 
Current), we decided, of these three attributes, to use only Exposure. Table 2 summarizes the list of parameters analyzed 
in this study.    

We produced a new parameter called Z Nodule Location to represent the location of the nodule in the lung along the 
z-axis. For each patient case, we found the z-coordinates (equivalent to Image Position Patient 3 in the DICOM header) 
of the top most and bottom most images of each lung to calculate the length of each lung. This allowed us to divide the 
lung into five subsections and to bin the location of the nodules into these five subsections. Later in our post-processing 
analysis, to perform equal-size binning of all CT parameters, Z Nodule Location was binned by dividing the lung into 3 
subsections. We were thus able to locate all 149 lung nodules along the z-axis respective to each other. Thus, we used 14 
parameters as summarized in Table 2.  

 

2.2 Semantic Mapping: Decision Tree Classifier 

Once CT image acquisition parameters, low-level image features, and semantic characteristics are integrated for 
lung nodule representation, a decision tree (DT) classification approach is applied to predict each one of the seven 
semantic characteristics based on the 64 low-level image features and 14 CT acquisition parameters. For our input, we 
used the 149 nodules from the LIDC dataset encoded using 64 image features and 14 CT acquisition parameters. The 
output was decision rules. The specifications for the decision tree are described in Table 3. After running the initial set of 
decision trees, we performed post-processing analysis on our DT results by running box plots and binning variables with 
a wide range of data. Our methodology is summarized in Figure 1. 

 
Table 1: Image features; SD stands for standard deviation, BG for background, and MRF for Markov Random Fields 

Shape Features Size Features Intensity Features Texture Features 
Circularity Area Minimum Intensity  11 Haralick features 
Roughness Convex Area Maximum Intensity 24 Gabor features 
Elongation Perimeter Mean Intensity 5 MRF features 
Compactness Convex Perimeter SD Intensity  
Eccentricity Equivalent Diameter Minimum Intensity BG   
Solidity Major Axis Length Maximum Intensity BG  
Extent Minor Axis Length Mean Intensity BG  
Radial Distance SD  SD Intensity BG  
  Intensity Difference  

 
 

Table 2: Final list of CT parameters
 1. Slice Thickness 2. Pixel Spacing 1 

3. kVp 4. Pixel Spacing 2 
 5. Reconstruction Diameter 6. Bits Stored 

7. Distance Source To Patient 8. High Bit 
9. Exposure  10. Pixel Representation  
11. Bit Depth 12. Rescale Intercept  
13. Convolution Kernel 14. Z Nodule Location   

 
Table 3: Specifications for Decision Tree 

Cross-validation 10 folds 
Growth Method C&RT 
Max. Tree Depth 50 
Parent Node 5 
Child Node 2 

 



 
 
 

 Figure 1: Diagram of the proposed methodology 

 

 

2.3 Post Processing: Box plots and Binning 

When a predictor variable (i.e. a CT parameter or an image feature) appears in the DT, it splits a parent node into 
two child nodes. We are not only interested in how a predictor variable influences the prediction of the target variable 
(semantic characteristics in our case), but also how predictor variables influence each other within the decision tree. In 
our research, we analyzed the influence of CT parameters on image features. To perform this analysis, we ran box plots 
for image features appearing as a parent node directly above the CT parameter and image features appearing as child 
nodes directly below the CT parameter. This analysis allows us to determine if there are other differences due to image 
features between two child nodes besides the CT parameter. If our results show non-overlapping boxplots, this would 
indicate that the CT parameter is influential in how cases are sorted. In such instances, we would then try to eliminate the 
influence of the CT parameter by normalizing the image features using min-max normalization approach and 
normalizing the CT parameters using Z-transformation. 

C&RT decision tree rules are influenced by the number of values for each predictor variable. If a variable has 
more values, it will more likely be selected in the decision rules. To minimize this influence, we performed equal-size 
binning so that all CT parameters have close to the same number of bins (i.e. 2 or 3 bins). For Convolution Kernel, 
which has categorical values, this parameter was binned based on kernel type: smoothing (value=1), edge-hardening 
(value =2), or neither (value =3). Our list of parameters was further reduced to 10 parameters due to redundant variables. 
Pixel spacing 2 was removed because it had values identical to Pixel Spacing 1. Bit Depth was found to have a 
correlation of 1 with High Bit, Bits Stored, and Pixel Representation. Due to redundancy, High Bit, Bits Stored, and 
Pixel Representation were removed. If parameters had 3 or less values (Distance Source to Patient, Bit Depth, and 
Rescale Intercept), they were not binned. Z-Nodule Location was re-binned into 3 bins (1=apex, 2=middle, and 3=base). 



Of the remaining parameters, Reconstruction Diameter, Exposure, and Pixel Spacing 1 were all binned with 3 equal-
width bins.  Slice Thickness and kVp were binned into 3 bins by rounding the values to the nearest whole value in the 
case of Slice Thickness and the nearest ten in the case of kVp.   

 
Table 4: Range of values for CT parameters after binning 
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3. Results 
3.1 Decision Tree Results 

The DT classification approach predicted each of the seven characteristics with at least 85% accuracy based on low-
level image features and CT parameters.  We used SPSS Answer Tree to generate C&RT decision trees; Answer Tree 
uses a brute force to exhaustively examine all of the fields of the dataset with respect to the target variable (semantic 
characteristic) to find the “best” split. The best split can be defined by the improvement score (Table 4) in the 
information gain criterion.  The CT parameters with higher improvement will appear higher up in the decision trees.   

 
Table 5: Results from DT classification before any post-processing analysis, showing influential CT parameters and the semantic 

characteristics they predict for. The first value in parenthesis represents the improvement, and the second value represents the level at 
which the CT parameter appears in the decision tree.  

 Convolution 
Kernel 

Reconstruction 
Diameter 

Exposure Distance Source 
to Patient 

Z Nodule 
Location 

kVp Slice 
Thickness 

Texture  (0.032, 3) (0.018, 8) - - - - - 
Subtlety (0.032, 3) 

(0.014, 8) 
- (0.022, 6) - (0.017, 10) - - 

Spiculation - - (0.043, 2) (0.016, 6) - - (0.016, 9) 
Sphericity - - - - (0.019, 6) (0.036, 3) - 
Margin (0.020, 9) (0.019, 10) - - - - - 
Malignancy - - (0.015, 3) - (0.019, 6) - - 

 
Lobulation - - (0.052, 2) (0.021, 6) - - - 

 
Convolution Kernel and Reconstruction Diameter appear as predictors for texture and margin, two correlated 

characteristics (correlation= 0.62)8. Convolution Kernel additionally predicts for subtlety. Given the definitions of 
subtlety (the contrast between nodule and surrounding), margin (how well defined the nodule margins are), and texture 
(the internal density of the nodule), using one of the two general categories for convolution kernels (a soft kernel for 
smoothing and a sharp kernel for edge enhancement) would understandably affect nodule characteristics. Furthermore, 
our findings appear to be in agreement with literature review showing that the type of convolution kernel influences 
image features2. 
 Though Convolution Kernel appears with high information gain in predicting texture and margin, the decision rules 
do not appear to sort cases based on the type of kernel (smoothing versus edge enhancement). We ran some further 
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analysis to investigate if Convolution Kernel influences other image features which are not evident from the decision 
tree. In our post-processing analysis, our boxplot results demonstrate that only Convolution Kernel is influential over 
image features, specifically the intensity features: MinIntensity, MaxIntensity, MeanIntensity, MinIntensity BG, 
MaxIntensityBG, and MeanIntensityBG (Figure 2).   Images reconstructed with kernels FC01, D, and Bone have lower 
values for intensity features, and images reconstructed with B30f and Stan kernels have higher intensity values. Since 
Convolution Kernel also appears in the DT targeting Margin, we performed this same analysis for the Margin DT but 
found all the box plots of image features had overlapping values.  These results suggest that Convolution Kernel affects 
semantic predicting of texture by influencing intensity features. However, later post-processing analysis show that the 
effect of Convolution Kernel can be eliminated by proper binning. 

We first tried to eliminate the influence of Convolution Kernel by normalizing the image features. However, 
Convolution Kernel continued to appear in the decision tree even after normalization. Convolution Kernel was 
successfully eliminated by binning the values by kernel type as either smoothing, edge enhancement, or neither. Thus the 
type of kernel (as smooth, edge, or neither) used for image reconstruction does not influence semantic predicting. We 
suspect there may be other confounding properties of Convolution Kernel that the manufacturers have kept private.   

 
 
Figure 2: Box plots of intensity features split based on type of Convolution Kernel 
 
 
 
 
 
 
 
 
 
 
 Min Intensity Max Intensity  Mean Intensity 
 
 
 
 
 
 
 
 
 
 
 
 Min IntensityBG Max IntensityBG Mean IntensityBG 
 
 
 

Reconstruction Diameter is defined as the diameter of the region used to reconstruct the image. Also known as Field of 
View, this parameter is essentially equal to the product of Pixel Spacing and 512. When unbinned, Reconstruction 
Diameter appears together with Convolution Kernel in the decision tree. We conclude that parameters affecting the 
reconstruction of CT images influence prediction of texture and margin. Our results indicate that a reconstruction 
diameter less than 382.031 (from a range of 260-390mm in our data) sorts 20 out of the 22 given nodules (from the 
parent node) as a solid texture (c=5) with 100% accuracy. However, when binned, Reconstruction Diameter fails to 
appear in the decision trees.  

 

 5
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Exposure and kVp represent two properties of the x-ray beam: beam quality, or the ability of the beam to penetrate an 
object (controlled by kVp), and beam intensity, or number of x-ray photons in the beam (controlled by Exposure). In our 
results, kVp appears in the decision tree targeting sphericity, while Exposure appears for subtlety, spiculation, 
malignancy, and lobulation. The frequency of Exposure appearing in our semantic predicting compared to kVp can be 
explained by the fact that kVp settings are not usually modified in CT scanning10. In our dataset, Exposure has a wider 
range of values than  kVp.   
 
Exposure and Distance Source to Patient appear as predictors for two correlated semantic characteristics: spiculation 
and lobulation (correlation = 0.65)8.  For both characteristics, Exposure appears with the highest information gain in the 
tree (improvement = 0.043 and 0.0524 for spiculation and lobulation respectively). Cases with an Exposure > 890 mAs 
predict with 79.31% accuracy no lobulation (c=5, 4), and cases ≤ 890 mAs are predicted with 56.57% accuracy to be 
markedly lobular (c = 1,2). Cases with Exposure >= 910 mAs are predicted with 64.28% accuracy to be little spiculated 
(c=5,4), and cases at less than 910 mAs have a 71.90% accuracy of being highly spiculated (c= 1,2). It appears a higher 
Exposure causes a less lobulated and spiculated appearance of the nodule.  

 
Distance Source to Patient is defined as the distance between x-ray beam source and the patient; the square of Distance 
Source to Patient is inversely proportional to Exposure [10, 11].  We performed a correlation on the LIDC dataset to 
confirm the relationship between these two parameters and found a correlation= -0.704.  

When equal-size binning was performed, Exposure was eliminated, and when predicting lobulation, Distance Source 
to Patient replaced Exposure as having the highest information gain.  A higher value for Distance Source to Patient (570) 
predicts with 61% accuracy a more lobular shape (c1, c2); a lower value (541, 535) predicts with 41% accuracy no 
lobulation (c5). The fact that Distance Source to Patient appears after equal-size binning but not Exposure is reasonable 
given how decision trees run. If two predictor variables are similar, C&RT decision trees use the predictor variable with 
higher information gain. Since Distance Source to Patient and Exposure are inversely correlated, we can reasonably 
expect the decision tree to use only one of the two parameters in the decision rules.  
 
Z Nodule Location is the only parameter in this experiment not extracted from a DICOM header. This parameter 
identifies the location of a nodule in the lung along the z-axis. A value of 1 means the nodule is in the lung apex, and a 
value of 5 indicates the nodule is in the lung base. The appearance of this parameter in prediction for subtlety, sphericity, 
and malignancy suggests that whether a nodule is located in the apex or base of the lung affects predicting for these 
semantic characteristics.  
 
Slice Thickness appeared in the decision tree targeting spiculation as a leaf node. Our literature review suggests Slice 
Thickness is important in spatial resolution (thinner slices result in higher spatial resolution)11. However, the appearance 
of Slice Thickness as a leaf node with low information gain, and its disappearance after binning, suggests this CT 
parameter is not significant in our semantic predicting.  

Rescale Intercept, having only three values, was not binned. However, binning of other values allows this parameter to 
appear in the decision tree. Along with Rescale Slope, this parameter specifies the relationship between CT values 
measured in Hounsfield Units (HU) and the values encoded in pixel format (called “stored values”). The relationship is 
defined as: 

CT values = m*SV + b, where m = Rescale Slope, SV = stored values, and b = Rescale Intercept9.  
 

Table 5: CT parameters appearing in decision trees after equal-size binning 

 Z Nodule Location Distance Source to Patient KVP Rescale Intercept 

Texture     

X   X Subtlety 

X X   Spiculation 

  X  Sphericty 

    Margin 

 6
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    Malignancy 

 X   Lobulation 
 

 

3.2 Results: Box plots  

 
Table 6: Image features appearing as child nodes directly under CT parameters 

CT Parameters Image Features 
Convolution Kernel (B30f, B31f, B31s, Bone, C, D, FC01 , 
Stan)   

Gabor, Inverse Variance, Major Axis Length, Elongation, 
Compactness 

Reconstruction Diameter (260-390 mm) Markov 
Gabor, Minimum Intensity, Circularity, Homogeneity, 
Compactness Exposure (25-2108 mAs) 

kVp(120, 130, 135, 140)  Elongation, Perimeter 

Z Nodule Location (1-5; 1= lung apex, 5 = lung base) Radial Distance, Minimum Intensity 
Distance Source to Patient (535, 541, and 570 mm) Contrast, Gabor 

 
The image features having a CT parameter as a parent node was identified as being dependent on the CT 

parameter for the corresponding semantic characteristic.  Table 6 summarizes image features with the highest probability 
to be dependent on the CT parameters. To determine more precisely how these image features are being influenced by 
CT parameters, box plots on image features were run comparing cases sorted by CT parameters into their respective 
child nodes. 

Our results show that box plots comparing cases sorted into two child nodes based on CT parameter decision 
rules overlap for the same range of values. Only two box plot comparisons had non-overlapping graphs:  a box plot of 
Radial Diameter split by Exposure when predicting Subtlety and a box plot of Third Order split by Z Nodule Location 
when predicting Sphericity (Table 7). Non-overlapping box plots would suggest that the image features plotted are 
influenced by the CT parameter. However, our results are not conclusive because the number of cases in each child node 
vary and can be as little as two. The child nodes split by Exposure in the Subtlety tree contain 8 and 3 cases. The child 
nodes split by Z Nodule Location in the Sphericity tree contain 2 and 13 cases. Thus, even though the box plots for 
Gabor are non-overlapping, the dataset is too small to be conclusive.  

   
Table 7: Non-overlapping boxplots of image features comparing child nodes split by  

specified CT parameter when predicting specified semantic characteristic 

Semantic Characteristic CT parameter  Image Feature  

Subtlety  Exposure  Radial Diameter  

Sphericity  Z Nodule Location Third Order  
 

Since more than one leaf node contains only two cases, we hypothesized that when only two cases are sorted 
into a child node, representing 10% or less of the original number of cases in the parent node, these cases are outliers. 
Box plots were run comparing image features for “outlier” cases and the remaining cases. However, there were no 
distinctly separated box plots; all were overlapping.  

4. Conclusion 

While there are several research studies on the influence of the imaging acquisition parameters with respect to nodule 
detection algorithms, nodule volume estimations, and image quality, the study presented in this paper is unique by 
addressing the influence of these CT scanner parameters on the automatic interpretation of lung nodules based on low-
level image features. Our preliminary results on 149 nodules identify seven CT parameters influential in producing 
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classification rules for the LIDC semantic characteristics: Convolution Kernel, Reconstruction Diameter, Z Nodule 
Location, Exposure, kVp, Distance Source to Patient, and Slice Thickness.  Of these seven parameters, we found that 
correct binning eliminates Convolution Kernel, Reconstruction Diameter, Exposure, and Slice Thickness, and introduces 
a new parameter, Rescale Intercept. As future work, we plan to validate the results on more lung nodules as they become 
available from the LIDC consortium. The identification and validation of these parameters as being important will create 
the premises for normalizing image features across different scanners with the final goal of generating robust models for 
automatic lung nodule interpretation.  
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