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ABSTRACT 
 
The performance of segmentation algorithms often depends on numerous parameters such as initial seed and contour 
placement, threshold selection, and other region-dependent a priori knowledge.  While necessary for successful 
segmentation, appropriate setting of these parameters can be difficult to achieve and requires a user experienced with the 
algorithm and knowledge of the application field.  In order to overcome these difficulties, we propose a prioritized and 
adaptive volumetric region growing algorithm which will automatically segment a region of interest while 
simultaneously developing a stopping criterion.  This algorithm utilizes volumetric texture extraction to establish the 
homogeneity criterion by which the analysis of the aggregating voxel similarities will, over time, define region 
boundaries.  Using our proposed approach on a volume, derived from Computed Tomography (CT) images of the 
abdomen, we segmented three organs of interest (liver, kidney and spleen).  We find that this algorithm is capable of 
providing excellent volumetric segmentations while also demanding significantly less user intervention than other 
techniques as it requires only one interaction from the user, namely the selection of a single seed voxel. 
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1. INTRODUCTION 
 

Image segmentation is the isolation of a region of interest from a visual dataset and is commonly used for 
content-based image retrieval, face and hand recognition, object tracking, and as a preliminary step for medical image 
analysis.  Segmentation algorithms must, therefore, have different strengths depending on the purpose for segmentation.  
For instance, object tracking and hand or gesture recognition algorithms must operate very quickly, often sacrificing 
accuracy to do so, in order to function in real-time or within the constraint of the frame-rate of an output device.  Many 
medical fields necessitate a much greater demand for accuracy8, for instance surgical planning, and therefore the speed 
of the algorithm becomes second to precision. 

There are many segmentation algorithms available, but few are able to perform with the accuracy required by 
the medical domain.  Active contours and deformable models are unable to segment regions with complex boundaries, 
threshold techniques are not designed to deal with textured regions of interest, and edge finding segmentation algorithms 
do not isolate only a single region of interest within an image.  Furthermore, it must be recognized that if a segmentation 
algorithm will be used in the medical domain there must be a significant ease of operation with little user intervention as 
the users of the algorithm, whose expertise will likely lie in a medical field, should not be burdened with the task of 
modifying parameters, selecting thresholds, placing initial contours, or adjusting other factors that require region-
dependent a priori knowledge9.  Current unsupervised segmentation algorithms are not able to consistently match the 
accuracy of supervised segmentation algorithms so there is still a need to consider the degree of user intervention when 
comparing algorithms for medical image segmentation. 

It is also important to recognize that there are multiple 3-dimensional image modalities in the medical domain.  
With this additional information comes the need to segment complex volumetric regions.  Volumetric segmentation 
results can be used for 3-dimensional visualization purposes as well as a preprocessing step for other classification and 
analysis algorithms which can benefit from the additional data to analyze. 

Texture, according to Smith and Chang11, refers to a visual pattern that contains properties of homogeneity.  
Previous studies have shown that it is possible to perform pixel-level texture extraction in 2-dimensional CT images5.  
With CT studies now isotropic in three dimensions, it is all the more desirable to extend the previous work to take into 
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account the extra dimension when extracting texture features.  We therefore implemented voxel-level texture extraction 
using Haralick’s3 co-occurrence model on a volumetric co-occurrence6 matrix derived from a 3-dimensional 
neighborhood around a voxel.  The resultant texture features were then used to formulate a homogeneity criterion.  With 
such a homogeneity criterion it is possible to define a region of interest. 

The approach to segmentation described in this paper involves the implementation of a seeded region growing 
algorithm, initially proposed by Adams and Bischof1, that has been modified by the integration of an adaptive and 
prioritized search as well as voxel-level texture feature extraction that is used to determine a homogeneity criterion.  By 
extracting voxel-level texture features we can progressively determine the texture features that characterize the region 
average as the region average is updated with the addition of each voxel to the region.  This process differs from 
traditional region growing algorithms as voxels adjacent to the region are kept in a prioritized list, ordered by similarity 
to the region average, in which the voxel most similar to the region average is at the front2.  The algorithm operates by 
taking voxels at the front of the list and adding them to the region first.  This ensures that the region expands to the most 
similar voxels first while preserving the integrity of the region average.  By keeping a list of visited voxels we maintain a 
histogram that expresses the similarity of each voxel to the region average they were initially compared to.  In analyzing 
this histogram we can visualize the rate at which the similarity between newly visited voxels and the region average 
increases or decreases.  Thus when filling a region of interest, the histogram will denote a bell-shaped structure, 
representing a region of similarity.  The algorithm then continues filling the region until the most similar remaining 
voxels do not lie within the general curve representing the region of interest.  That is to say, the most similar voxel is no 
longer within a certain cut-off threshold defined by the bell-curve. 

Due to the fact that the algorithm is capable of finding texture features that quantify the region of interest and is 
able to automatically determine a stopping criterion, our algorithm requires very little user-intervention.  The user is 
required to do nothing more than identify the seed. 

2. METHODOLOGY 

2.1. Data Compression 
The CT studies used contained 3D image data consisting of consecutive 2D DICOM (Digital Imaging and 

Communications in Medicine) slices where each slice was 512 by 512 pixels with a 12-bit gray-level resolution.  
Extracting voxel-level texture features requires computations on co-occurrence matrices whose dimensions are directly 
related to the gray-level resolution.  Therefore, in order to greatly reduce computational costs, we decreased the number 
of gray-levels by a factor of 16 resulting in 256 intensities.  A study evaluating the method of image compression known 
as clipped binning has shown that a reduction from 4096 gray-levels to 256 gray-levels still provides satisfactory 
discriminatory value between abdominal organs when evaluating soft-tissues with the use of texture features10. 

In order to reduce the number of gray-levels in the data by a factor of 16, we implemented clipped binning.  
Clipped binning linearly reduces a specified range of gray-levels to a smaller range, while allocating everything above 

and below the original range to one gray-level above and below the resultant range, respectively7.  Radiologists from 
Northwestern Memorial Hospital claimed that soft-tissues in DICOM images were represented by gray-levels in the 
range [856, 1368], which was affirmed by Lerman7 with the use of a k-means clustering algorithm.  This technique was 
then used to effectively reduce all non soft-tissue elements in the data to one of two gray-levels while distributing the 
soft-tissue range to the remaining gray-levels.  We started with 4096 gray-levels (12-bits, [0, 4095]), and compressed the 
range to 256 gray-levels whereas gray-levels [0, 855] were mapped to gray-level 0, gray-levels [856, 1368] were linearly 
distributed to gray-levels [1, 254], and gray-levels [1369, 4095] were mapped to gray-level 255.   

Figure 1: Clipped binning 
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Figure 2: Mahalanobis distance 

Table 1: Texture features 

2.2. Voxel-level texture extraction 
A region growing algorithm requires a criterion of homogeneity in order to evaluate voxels and determine if 

they should be included in a region1.  We used voxel-level texture extraction to calculate 3D texture features for the 
voxels in order to compare them to the texture features that characterize the region average.  This technique is similar to 
pixel-level texture extraction, explained by Kalinin5, although projected onto an additional dimension. 

To perform voxel-level texture extraction, we select a voxel and define a 3x3x3 neighborhood about the voxel 
in order to develop a 2-dimensional co-occurrence matrix from the volume of gray-level intensities.  This co-occurrence 

matrix P, is of size n by n, where n is the number of gray-levels in the CT study.  The volumetric co-occurrence matrix 
accrues voxel-pair intensities such that P[i, j] records the number of occurrences of voxel-pairs with intensities i and j6.  
We then find all voxel-pairs by iterating through the 3x3x3 cube in an ordered manner to insert values into the co-
occurrence matrix.   

From the volumetric co-occurrence matrix we calculate four texture features proposed by Haralick, those being 
entropy, mean, variance, and cluster tendency3.  These texture features are defined in Table 1.  Since the texture features 
extracted from a voxel are compared to the texture features that characterize the region average, it was necessary to find 
the distribution of each texture feature to determine how much two texture features differ.  By taking an initial sampling 
of 10,000 voxels from the CT study, we determined the distribution of the values of each texture feature in relation to 
our data.  In our samplings, the distributions of the variance and mean represented rather normal distributions while 
cluster tendency and variance resulted in exponential distributions.  In order for all texture features to exhibit normal 

distributions we took the logarithmic value of the cluster tendency and entropy values which resulted in normal-like 
distributions.  By doing this we were able to compare texture features taken from any voxel with the entropy, mean, 
cluster tendency, and variance of the running region average.   

It was then necessary to provide a quantitative measurement defining the similarity between the texture features 
of a voxel and the texture features of the region average.  Since sampling the dataset provides distributions of the texture 
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Figure 3: Histogram derived from prioritized list 

features, it is possible to find the probability between values in the distributions.  By taking the Mahalanobis distance of 
the corresponding values of each texture feature, we found the degree to which each texture feature of a voxel deviates 
from the corresponding texture feature of the region average.  We then took the Manhattan distance of the four resultant 
values providing a quantitative measurement of the similarity between any voxel and the region average, which can be 
seen in Figure 2. 

2.3. Region growth 
With a means of evaluating the similarity between voxels and the region average, we can start the region-

growing process.  When starting the algorithm, the region average will be based entirely on the seed voxel.  That is, the 
entropy, mean, cluster tendency, and variance of the region average will be identical to that of the seed voxel.  The 
algorithm will then proceed to evaluate voxels adjacent to the region, whereas the region is initially composed of only 
the seed, and then form a prioritized list of the adjacent voxels ordered by similarity to the region average2.  Therefore 
the voxel most similar to the region will be at the front of the queue.  The algorithm will then select the voxel at the front 
of the prioritized list and insert it into the region.  The four texture features of the newly added voxel will then be used to 
update the texture features characterizing the region average allowing it to be an accurate representation of all voxels 
included thus far.  The texture features of the voxels adjacent to the new addition to the region will then be calculated in 
order to add those voxels to the prioritized list so that they may be considered for the region as well.  This process is 
repeated to allow region growth, whereas the region will spread to voxels most similar to the region average first. 

Before the region growing process can start, the algorithm must first be initialized by the selection of a seed 
voxel as a starting point for growth as well as for a basis for the region average.  It is then necessary to allow the 
algorithm to grow and spread to similar neighboring voxels in order to allow the region average to better represent the 
region of interest as opposed to just the area of the seed voxel.  After an initial period of growth, the prioritized list, 
including voxels already added to the region, generates a histogram that accumulates voxels sorted by similarity to the 
region average.  With this initial growth, the histogram represents a bell-shaped curve.  This bell shaped curve 
essentially denotes the region of interest whereas the right-most voxels have yet to be added to the region due to their 

dissimilarity.  The right half of the bell-curve shows a notable increase in dissimilarity accompanied by an evident 
decrease in voxel occurrences.  This change from frequently occurring voxels to less frequently occurring voxels of 
greater dissimilarity signifies a separation between voxels that are reasonably similar to the region average and those that 
are not.  That is to say, the bottom of the right tail of the bell-curve represents the border of a region of interest. 

Since the right tail of the histogram represents voxels adjacent to the region that are decreasing in similarity to 
the region average, it is desired to prevent region growth to these voxels.  In order to completely fill the entire region it 
would be required to grow as close to the boundary as possible.  In doing this, however, there is the potential problem of 
leaking and including voxels that are not actually within the region of interest.  We claim, however, that it is possible to 
segment a region by filling most of it and then find the shape by filling in holes and softening edges with morphological 
operators4.  To that extent, it is not our desire to add voxels to the region until we have reached the boundaries, but to 
find most of it.  We then, relative to the right tail of the bell-curve, define a cut-off threshold such that voxels with a 
similarity less than such a value will not be added to the region.  
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Figure 4: Histogram derived from prioritized list 

Since it is possible, in early stages of region growth, for the bell-curve of the histogram to not yet fully 
represent the region of interest, we progressively redefine the cut-off threshold.  After an initial period of growth, the 
first cut-off threshold is calculated as the similarity value that corresponds to the first bin of the histogram that is to the 
right of the peak bin as well as less than 90% of the height of the histogram.  Since this initial value does not yet likely 
correspond to a cut-off threshold that would be used for the region of interest as a whole, we continue adding voxels to 
the region until a voxel is added whose similarity to the region average exceeds the cut-off threshold.  We then take this, 
given additional growth of the region and correspondingly the histogram, to recalculate the cut-off threshold which 

eventually moves outwards.  Should the cut-off threshold be exceeded immediately after recalculation, signifying that 
the voxel most similar to the region average in the prioritized list exceeds yet again the newly calculated threshold, 
region growth will be terminated.  Figure 4 portrays a screenshot of the user-interface developed for the algorithm.  The 
figure shows the histogram and two vertical bars within it.  The right-most bar represents the current cut-off threshold 
and the left bar represents the last evaluated voxel.  As additional voxels are added to the region, the left bar will 
reposition itself relative to the voxels added and eventually reach the cut-off threshold in which a new cut-off value will 
be calculated.  We can note from this figure that the majority of voxels to the right of the cut-off threshold bar are not in 
the region, but adjacent to the region and waiting in the prioritized list.  

The cut-off threshold is calculated as a direct result from the bins of the histogram.  In order to generate a 
histogram from the prioritized list, it is necessary to define the number of bins that will be used to represent the 
histogram.  If too many bins are chosen to create the histogram, precision is lost when calculating a cut-off value.  If too 
few bins are used to create the histogram, the bell curve becomes distorted which can cause problems for generating a 

cut-off value.  Initial histograms may also suffer if there is too little data spread across an excess of bins.  It is therefore 
necessary for the number of bins to increase relative to the increasing region.  We decided to make the number of bins 
representing the histogram increase logarithmically corresponding to the number of voxels in our region while starting 
with an initial amount of 75 bins.  Therefore, every time the cut-off value must be recalculated, and thus a histogram 
recreated as well, the number of bins used is computed as shown in Equation 1.  This ensures that the number of bins 
grows at a rate which accommodates increased precision, as the number of voxels in the region increases, while keeping 
a small amount of initial bins to maintain a the bell-shaped distribution at early stages.  We chose to increase the number 
of bins logarithmically because the addition of bins at a linear rate would result in far more bins than would be necessary 
for large regions of interest such as the liver. 
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Figure 5: User interface 

Figure 6: Segmentation of the right kidney 

Since our goal, in region growing, was to not fill every voxel of the region of interest but instead a majority, we 
applied morphological operators to our segmented volume.  We used dilation to fill in the dense portions of the 
segmented region and blurring allowed for the softening and rounding of edges in our segmentations. 

3. RESULTS 
The CT studies used to achieve our results were obtained from Northwestern Memorial Hospital and the 

National Library of Medicine.  All segmentations were performed with a single user-intervention which called for the 
selection of a seed voxel from the user-interface shown in Figure 5.  This only requires the user to scroll through 

consecutive slices of CT images, click the cursor on a region of interest, and click on the start button.  The following 
segmentations are of the kidney, liver, and spleen.  Although the captured images only show a 2-dimensional 
segmentation, each organ was segmented volumetrically.  Each figure of a segmentation shown here has three parts.  The 
left part of each image shows a single slice of the volumetric region of interest before segmentation.  The middle portion 
of the image shows a single slice of the volumetric region of interest and an outline defining the results of the 
segmentation.  The right portion of the image contains a single slice of the isolated volumetrically segmented region of 
interest alone. 
 Figure 6 shows a single slice of the results of the volumetric segmentation of a right kidney.  Notice that the 
result has a “U” shape.  This gap, which was not segmented, is the collecting duct of the kidney and is not desired in the 

result, therefore the algorithm worked as intended.  Thus, the texture of the kidney tissue and that of the collecting duct 
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Figure 7: Segmentation of the liver 

Figure 8: Segmentation of the spleen 

were different enough to be classified as separate regions.  This result shows that our algorithm is capable of segmenting 
complex volumetric structures such as the “U” shape that many active contour models are unable to properly segment.   
 The next volumetric segmentation, Figure 7, is of a liver and demonstrates the capability of our algorithm to 
segment donut-like regions of interest that have not only external boundaries but internal boundaries as well.  These 

kinds of phenomena prevent contours and deformable models from successful segmentations.  It is also worth noting the 
visual similarity connecting the liver and the tissue just left of the liver and outside of the ribs, which texture features 

were able to discriminate between.  The final volumetric segmentation shown, Figure 8, is of the spleen. 

4. CONCLUSIONS 
The immediate benefits demonstrated by our algorithm are the production of quality volumetric segmentations 

and a parameter-less user-interface that takes only one user intervention, the selection of a single seed voxel.  Our 
algorithm does, however come with drawbacks.  Volumetric CT studies contain an extremely large amount of data.  
Regions of interest may contain potentially millions of voxels.  It may, therefore, take quite a few hours to segment 
larger organs such as the liver.  It must also be noted that the algorithm operates on a criterion of homogeneity.  It is, 
therefore, required for a region of interest to be homogeneous in texture.  Organs of a complex makeup, such as the heart 
would be much more difficult to segment given the varying amount of textures present. 

For future work we are interested in examining alternate image compression strategies such as continuous 
clipped-binning7 which is similar to clipped-binning but the target range of gray-levels would be distributed continuously 
to the resultant gray-levels instead of linearly.  It is also worth looking into alternate texture features to see if there may 
be a better combination which may allow for greater discrimination between soft-tissues.  We are also interested in the 
potential for unsupervised segmentation which would utilize a multi-seeded placement strategy in order to automatically 
accomplish segmentation. 
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