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ABSTRACT
While image segmentation makes up a vital step in the pro-
cess of such tasks in the medical domain as tissue classifi-
cation, content-based image retrieval, and computer-aided
diagnosis, it remains an area of much debate regarding how
one interprets the results of machine segmented regions.
Many segmentation methods are still evaluated using a sub-
jective human opinion of quality with a lack of quantita-
tive analysis. Ideally, segmentation would be performed on
an image with as little aid from a human user as possible,
so solid quantitative analysis of results and optimization of
user-defined parameters are a must. This paper proposes
the use of a methodology based on eight individual perfor-
mance measures. It then introduces a metric based on a sta-
tistical analysis of the overlap between machine segmented
and corresponding ground truth images to evaluate and op-
timize algorithm parameters, and compare inter-algorithm
performance for unsupervised segmentation algorithms.
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1 Introduction

Image segmentation is the process of dividing an image
into unlabeled regions that have some sort of characteristic
that separates them from other regions. Without segmen-
tation, tasks like tissue classification in medical images,
computer aided diagnosis in radiology, and content-based
image retrieval would not be possible. Segmentation makes
up the first step in much image processing work.

Quantitatively stating whether or not the algorithm
performs well is difficult and research in this area does not
present a way in which algorithms can be evaluated in the
general sense. The majority of studies in the area of perfor-
mance evaluation apply only to segmentations of a single
region from its background [1, 5, 7, 13]. For many appli-
cations, like content-based image retrieval and computed
tomography, it would be more practical to separate a im-
age into multiple regions. First, there may be multiple re-
gions of interest for which individual segmentations would
decrease efficiency and increase dependency on human in-

tervention, and second, isolating the background into one
homogeneous region may prove daunting. Originally, this
research was designed to aid segmentation of computed to-
mography in medical imaging.

There are two major methods for evaluating segmen-
tation performance [12]. One compares machine seg-
mented results to a ground truth segmentation of the same
image [1, 5, 8, 9], while the other uses similarity measures
to analyze the machine segmented regions [3, 4, 10, 12, 11].
In general, the latter is less reliable because whatever
heuristic one devises to evaluate a segmentation after it is
done can be implemented into the algorithm itself to be
used during runtime. In other words, why use an evalu-
ation criterion after segmentation has finished, when you
could implement it as part of the segmentation itself? In
the case of the ground truth, the evaluating criterion is un-
known to the algorithm, leaving less potential for bias.

The following methodology builds on region cate-
gories that Hoover et al. proposed in their paper on range
image segmentation [6] with some slight modifications.
Hoover only evaluated pixels on the surfaces of objects that
were imaged in true space, whereas we are concerned with
the whole image. Chang et al. also used a variation of
this method in [2] to evaluate the performance of several
segmentation algorithms, however they stopped at catego-
rization, whereas this paper proposes several performance
measures and an overall metric based on those categories.

2 Methodology

Our performance evaluation is divided into 3 steps. First,
the segmented regions are divided into 5 mutually exclusive
categories based on those proposed by Hoover et al. Sec-
ond, eight performance measures are calculated based on
the relation of region categories to the image as a whole,
as well as to what degree they fit their classification. Fi-
nally, the measures are combined into a metric to produce
an overall ”Goodness” rating.



2.1 Region Categories

The first step in evaluating performance is to calculate
an overlap matrix between the regions from the machine
segmentation (MS) and the regions from the ground truth
(GT). Here, a region is merely the set of pixels assigned
to that region. The matrix consists of GT regions along
one axis and MS regions along the other. Each element of
the matrix represents the number of pixels in the overlap
between the row representing one region and the column
representing the other. Naturally, GT regions cannot over-
lap with GT regions and MS regions cannot overlap with
MS regions. Regions are then labeled as one of 5 types:
Correctly Detected, Over Segmented, Under Segmented,
Missed, or Noise. Each and every region in both GT and
MS are categorized. Again, these region catergories origi-
nate from [6].

For each category, let T be a threshold representing
the quality standard of evaluation where 0.5 ≤ T ≤ 1.0.
This range, along with the stipulation that correctly
detected regions cannot be recategorized, guarantees that
a region will never belong to more than one category at a
time.

Correct Detection (CD)
Let RGT be a set of pixels in a region of GT, and RMS

be a set of pixels in a region of MS.
RGT and RMS are said to be correctly detected if they

satisfy two conditions:

1.
|RGT ∩RMS |

|RMS |
≥ T (1)

2.
|RGT ∩RMS |

|RGT |
≥ T (2)

This means that RGT makes up at least T% of RMS ,
and RMS makes up at least T% of RGT . Correct Detection
must be categorized first to avoid a special case where a
region could belong to two categories at once.

Over Segmentation (OS)
Let RGT be a set of pixels in a region of GT, and

{RMS1, ..., RMSn} be a set of regions in MS, where n >
1.

RGT and each element of {RMS1, ..., RMSn} are
said to be over segmented if they satisfy two conditions:

1.
|RGT ∩RMSi|

|RMSi|
≥ T (3)

for each i=1,...,n.

2.
|RGT ∩ (

⋃n
i=1 RMSi)|

|RGT |
≥ T (4)

This means that RGT makes up at least T% of each
individual element in {RMS1, ..., RMSn}, and the union
of all elements in {RMS1, ..., RMSn} makes up at least
T% of RGT . Any region in GT and group of regions
in MS that satisfy those conditions are considered to be
over segmented unless one of the regions has already been
categorized as correctly detected. A region cannot be both
an instance of correct detection and over segmentation.

Under Segmentation (US)
Let RMS be a set of pixels in a region of MS, and

{RGT1, ..., RGTn} be a set of regions in GT, where n > 1.
RMS and each element of {RGT1, ..., RGTn} are said

to be over segmented if they satisfy two conditions:

1.
|RMS ∩RGTi|

|RGTi|
≥ T (5)

for each i=1,...,n.

2.
|RMS ∩ (

⋃n
i=1 RGTi)|

|RMS |
≥ T (6)

This means that RMS makes up at least T% of each
individual element in {RGT1, ..., RGTn}, and the union of
all elements in {RGT1, ..., RGTn} makes up at least T%
of RMS . Any region in MS and group of regions in GT
that satisfy those conditions are considered to be under
segmented unless one of the regions has already been
categorized as correctly detected. A region cannot be both
an instance of correct detection and under segmentation.

Missed
A missed region is a region in GT that does not

participate in any instance of correct detection, over
segmentation, or under segmentation.

Noise
A noise region is a region in MS that does not partic-

ipate in any instance of correct detection, over segmenta-
tion, or under segmentation.

2.2 Performance Measures

We have derived eight distinct performance measures from
the region categories above, seven of which are combined
to make up the overall “Goodness” metric. The eight
measures are correct detection index, correct detection
precision, over segmentation index, over segmentation
fragmentation, under segmentation index, under segmenta-
tion inclusion, garbage index, and garbage quality.

Correct Detection Index
The correct detection index (CDindex) measures the

percentage of correctly detected pixels in the image overall.
This includes all pixels in the overlap between correctly
detected regions. Let (RGT1, RMS1), ..., (RGTn, RMSn)



be all the pairs of correctly detected regions and IMG be
the set of all pixels in the image.

CDindex =
|
⋃n

i=1(RGTi ∩RMSi)|
|IMG|

(7)

Correct Detection Precision
Correct detection precision (CDprecision) measures

the percentage of overlap between correctly detected re-
gions overall. In other words, the more closely aligned
the two regions, the better the precision rating. This mea-
sure does not get calculated into the final Goodness Met-
ric, because it measures pixels that are categorized as
correctly detected, but excluded from the correct detec-
tion index. The penalty for a low correct detection pre-
cision is the same penalty the exclusion represents. Let
(RGT1, RMS1), ..., (RGTn, RMSn) be all the pairs of cor-
rectly detected regions and IMG be the set of all pixels in
the image.

CDprecision =
|
⋃n

i=1(RGTi ∩RMSi)|
|
⋃n

i=1(RGTi ∪RMSi)|
(8)

Over Segmentation Index
The over segmentation index (OSindex) mea-

sures the percentage of over segmented pixels in
the image. Let (RGT1, {RMS1,1, ..., RMS1,m1}), ...,
(RGTn, {RMSn,1, ..., RMSn,mn

}) be the groups of over
segmented regions where {RMS1,1, ..., RMS1,m1} are the
MS fragments that overlap RGT1. Let IMG be the set of
all pixels in the image.

OSindex =

∣∣∣⋃n
i=1(RGTi ∩ (

⋃mi

j=1 RMSi,j))
∣∣∣

|IMG|
(9)

Over Segmentation Fragmentation
Over segmentation fragmentation (OSfrag) measures

the percent makeup of all over segmented pixels by a sin-
gle MS fragment. The fewer the MS regions that overlap a
GT region, the better and higher OSfrag will be. Note that
the highest this value can be is 0.5, as there can be only
as low as two MS regions in a GT region categorized as
over segmented. Let (RGT1, {RMS1,1, ..., RMS1,m1}), ...,
(RGTn, {RMSn,1, ..., RMSn,mn

}) be the groups of over
segmented regions where {RMS1,1, ..., RMS1,m1} are the
MS fragments that overlap RGT1.

OSfrag =
n∑

i=1

∣∣∣RGTi ∩ (
⋃mi

j=1 RMSi,j)
∣∣∣

mi ∗
∣∣∣⋃n

k=1(RGTk ∩ (
⋃mk

j=1 RMSi,j))
∣∣∣

(10)

Under Segmentation Index

The under segmentation index (USindex) mea-
sures the percentage of under segmented pixels in
the image. Let (RMS1, {RGT1,1, ..., RGT1,m1}), ...,
(RMSn, {RGTn,1, ..., RGTn,mn

}) be the groups of over
segmented regions where RGT1,1, ..., RGT1,m1 are the GT
fragments that overlap RMS1. Let IMG be the set of all
pixels in the image.

USindex =

∣∣∣⋃n
i=1(RMSi ∩ (

⋃mi

j=1 RGTi,j))
∣∣∣

|IMG|
(11)

Under Segmentation Inclusion
Under segmentation inclusion (USinclusion) mea-

sures the percent makeup of all under segmented pixels
by a single GT fragment. The fewer the GT regions
that an MS region overlaps, the better and higher US-
inclusion will be. Note that the highest this value can
be is 0.5, as there can be only as low as two GT re-
gions overlapped by an MS region categorized as un-
der segmented. Let (RMS1, {RGT1,1, ..., RGT1,m1}), ...,
(RMSn, {RGTn,1, ..., RGTn,mn

}) be the groups of over
segmented regions where {RGT1,1, ..., RGT1,m1} are the
GT fragments that overlap RMS1.

USinclusion =
n∑

i=1

∣∣∣RMSi ∩ (
⋃mi

j=1 RGTi,j)
∣∣∣

mi ∗
∣∣∣⋃n

k=1(RMSk ∩ (
⋃mk

j=1 RGTi,j))
∣∣∣

(12)

Garbage Index
Here, “garbage” refers to both noise and missed re-

gions. The garbage index (Gindex) measures the percent-
age of overlapping missed and noise pixels in the image.
Let {RMS1, ..., RMSn} be all noise regions in MS and
{RGT1, ..., RGTn} be all missed regions in GT. Let IMG
be the set of all pixels in the image.

Gindex =

∣∣∣(⋃n
i=1 RMSi) ∩ (

⋃m
j=1 RGTj)

∣∣∣
|IMG|

(13)

Garbage Quality
Garbage quality (Gquality) is a weight for the garbage

index that depends on how “messy” the overlap is between
missed and noise regions. Let {RMS1, ..., RMSn} be all
noise regions in MS and {RGT1, ..., RGTn} be all missed
regions in GT. Let K be the average number of noise re-
gions overlapping a single missed region and C be the av-
erage number of missed regions overlapping a single noise
region.

Gquality =

∣∣∣(⋃n
i=1 RMSi) ∩ (

⋃m
j=1 RGTj)

∣∣∣
(C + K) ∗

∣∣∣(⋃n
i=1 RMSi) ∪ (

⋃m
j=1 RGTj)

∣∣∣
(14)



2.3 Overall Goodness Metric

Seven of the eight performance measures are combined to
form a metric that produces a single rating. Depending on
the application, it may not be suitable to evaluate at such
a high level of abstraction, in which case the performance
measures can be analyzed individually.

The evaluation metric begins with the percentage of
pixels that were correctly detected. All other pixels in
the image were essentially segmented incorrectly, however
these pixels vary in terms of the degree by which they differ
from the ground truth. For example, areas of over segmen-
tation or under segmentation would be preferable to areas
of noise and missed, and even more preferable to pixels
that do not reside in the overlap between groups (e.g., pix-
els that are in a correctly detected region, but do not reside
in the overlap between the two regions in the correctly de-
tected pair). These differences in quality are captured by
weighting the contribution of pixels not correctly detected.
The metric consists of three parts: “Good”, “Bad”, and a
weight, υ.

Good = CDindex (15)

Bad = 1− CDindex (16)

υ = 1− (OSυ + USυ + Gυ) (17)

where

OSυ = (2 ∗OSfrag) ∗ OSindex

(1− CDindex)
(18)

USυ = (2 ∗ USinclusion) ∗ USindex

(1− CDindex)
(19)

Gυ = Gquality ∗ Gindex

(1− CDindex)
(20)

The overall “Goodness” metric is defined as follows:

Goodness = Good− υ ∗Bad (21)

where 0 ≤ υ ≤ 1

Goodness falls into a range between -1.0 and 1.0 with
a local ceiling at CDindex and a floor at 2*CDindex-1 (see
fig. 1).

Figure 1: Metric behavior

3 Examples

To illustrate the effectiveness and reliability of the met-
ric, several hand-drawn segmentations were compared to
ground truth. The simplicity of hand-drawn examples al-
lows for basic understanding of how the metric would eval-
uate real machine segmentations. Four example ground
truth segmentations were created. Each example has four
corresponding segmentations (S-A, S-B, S-C, S-D) repre-
senting machine segmentations. For both the ground truth
and the example segmentations, each gray level represents
a different region. The value for the gray level is irrelevant;
only the partitioned space has meaning. For example, a re-
gion in the ground truth may be represented by gray level
3 and correspond with a region in the segmentation repre-
sented by gray level 1.

Ideally, the metric produces values for the segmen-
tations that correspond with human interpretation of qual-
ity. In other words, the quantitative ranking of the metric
should correspond to a human qualitative ranking.

The metric is computed for each of the segmentations
against their corresponding ground truth image with a
Goodness threshold, T , of 0.7 and 0.8. Again, T is the
threshold by which regions are categorized.

Example 1
The first example consists of four equally sized re-

gions, each occupying a quarter of the image space (fig. 2).
S-A ranks highest followed by S-C at both T=0.7 and
T=0.8. S-C ranks second because only 25% of the image
has error with a very clean over segmentation of two MS
regions in the upper-left. At a first glance, it may appear
that S-B should rank higher than S-D, but S-B combined
the top-left and bottom-right GT regions into a single MS
region resulting in 50% under segmentation. At T=0.7,
S-D still contains many regions that classify as correctly
detected. If T increases to a value of 0.8, representing a
higher quality standard, the “leaking tendrils” of S-D have
a more adverse effect on its rating (tables 1 and 2).

Figure 2: Example 1 ground truth with machine segmenta-
tions



Example 2
The second example consists of two equally sized

regions on the left and four equally sized regions on the
right, making a total of six regions (fig. 3). S-A represents
a perfect segmentation and ranks the highest of the four.
S-B ranks next, followed by S-C, both examples of under
segmentation. S-C ranks lower than S-B because a greater
percentage of the image is under segmented. As expected,
S-D ranks last because of its noise.

Figure 3: Example 2 ground truth with machine segmenta-
tions

Example 3
The third example resembles example 1, except now

the upper-left and bottom-right corners are combined into
a single ground truth region (fig. 4). S-C ranks first since
it almost exactly matches the ground truth segmentation.
S-D serves as another example of how the evaluation can
change depending on what standard you hold the quality
of segmentation to. At T=0.7 S-D ranks second because
the MS regions consist of 70% correctly detected pixels.
However, at T=0.8 the rating of S-D drops drastically,
reducing it to the worst of the four MS segmentations.
S-A follows S-D at T=0.7, as 50% of the image has been
over segmented by separating the top-left and bottom-right
corners into two MS regions. S-B ranks the lowest because
it over segments one diagonal and under segments the
other. At T=0.8, S-B ranks higher than S-D because the
error in S-D consists mostly of noise and missed regions,
whereas the error in S-B is primarily over segmentation
and under segmentation.

Example 4
The fourth example considers a case with eight

equally sized GT regions. S-C ranks first as a perfect
match to the ground truth (fig. 5). S-B ranks second
despite its poor segmentation on the left, because the four
MS regions on the right are all correctly detected. Notice
the change in its goodness between T=0.7 and T=0.8.
Predominantly under segmented, S-A ranks third with
some over segmentation in the second GT region from the

Figure 4: Example 3 ground truth with machine segmenta-
tions

left. Lastly, S-D ranks lowest with an abundance of noise
and oddly placed MS regions.

Figure 5: Example 4 ground truth with machine segmenta-
tions

T=0.7 S-A S-B S-C S-D
Example 1 0.8771 0.5000 0.7500 0.5611
Example 2 1.0000 0.7500 0.5971 0.2138
Example 3 0.5000 -0.0409 0.9675 0.6605
Example 4 -0.1885 0.7469 1.0000 -0.4922

Table 1: Goodness values at T=0.7 for each of the sixteen
segmentations

4 Conclusions and Future Work

These preliminary studies show the Goodness metric to an-
alyze the performance of machine segmentation in a coher-
ent and rational way. Future work into this aspect of its ef-
fectiveness might call for a study of human rankings versus
goodness ratings. At this stage of the research, however,
the metric seems to match human perception (considering
T values) fairly well.

The metric provides only a general evaluation of per-
formance, whereas the eight individual performance mea-



T=0.8 S-A S-B S-C S-D
Example 1 0.8771 0.5000 0.7500 0.1828
Example 2 1.0000 0.7500 0.1402 -0.7692
Example 3 0.5000 -0.0409 0.9675 -0.7500
Example 4 -0.1885 0.3445 1.0000 -0.6486

Table 2: Goodness values at T=0.8 for each of the sixteen
segmentations

sures describe various aspects of the behavior of the seg-
mentation in more detail. These measures can be combined
to provide other results such as the quality with regards to
region shape, rather than correct detection priority. For ex-
ample, this may call for OS and US pixels to be weighted
as heavily as CD pixels.

Research is currently underway in terms of using this
metric as a means to optimize parameters within a segmen-
tation algorithm. We are currently researching wavelet-
based texture segmentation algorithms for medical com-
puted tomography images. A method for creating training
images with ground truth based on pure human tissue tex-
tures is currently underway. The goodness metric will al-
low for a quantitative justification of parameter values such
as the type of discrete wavelet transformation and the dis-
tance threshold in feature space used to assign pixels to re-
gions.

Having a threshold for the Goodness Metric itself
may seem to solve a thresholding problem in the algorithm
only by creating one for evaluation, however the T value
for Goodness differs from an algorithm threshold in that it
merely represents the standard of quality that one holds the
algorithm to. Parameters and thresholds in an algorithm
range anywhere from distances in feature space to the type
of transform one uses to extract pixel data. Ideally, T would
be set at 1.0, but it is unlikely that any algorithm would per-
form well at this level of expectation. An algorithm yield-
ing Goodness 0.35 at a higher Goodness T value would be
better than an algorithm yielding Goodness 0.35 at a lower
Goodness T value. Future work could include quantita-
tively ascertaining the quality change across Goodness T
levels yielding the same Goodness value, standardizing the
metric and removing the need for a threshold.
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