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Texture analysis of medical images
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The analysis of texture parameters is a useful way of increasing the information
obtainable from medical images. It is an ongoing field of research, with applications
ranging from the segmentation of specific anatomical structures and the detection of
lesions, to differentiation between pathological and healthy tissue in different
organs. Texture analysis uses radiological images obtained in routine diagnostic
practice, but involves an ensemble of mathematical computations performed with
the data contained within the images. In this article we clarify the principles of
texture analysis and give examples of its applications, reviewing studies of the
technique.
q 2004 The Royal College of Radiologists. Published by Elsevier Ltd. All rights
reserved.
Introduction

The texture of images refers to the appearance,
structure and arrangement of the parts of an object
within the image. Images used for diagnostic
purposes in clinical practice are digital. A two-
dimensional digital image is composed of little
rectangular blocks or pixels (picture elements), and
a three-dimensional digital image is composed of
little volume blocks called voxels (volume
elements); each is represented by a set of coordi-
nates in space, and each has a value, representing
the grey-level intensity of that picture or volume
element in space. Since most medical images are
two-dimensional we will restrict the discussion to
pixels, bearing in mind that the extension to voxels
and volumetric images is straightforward.

We may attribute the texture concept in a digital
image to the distribution of grey-level values among
the pixels of a given region of interest in the image.
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One way of depicting this is to display the digital
data as a three-dimensional map based on the pixel
values, as shown in Fig. 1. Thus, texture analysis is
in principle a technique for evaluating the position
and intensity of signal features, i.e. pixels, and
their grey-level intensity in digital images. Texture
features are, in fact, mathematical parameters
computed from the distribution of pixels, which
characterize the texture type and thus the under-
lying structure of the objects shown in the image.

According to the methods employed to evaluate
the inter-relationships of the pixels, the forms of
texture analyses are categorized as structural,
model-based, statistical and transform methods.1
The structural methods2

This represents texture by the use of well-defined
primitives. In other words, a square object is
represented in terms of the straight lines or
primitives that form its border. The advantage of
these methods are that they provide a good
symbolic description of the image. On the other
hand, it is better for the synthesis of an image than for
its analysis. The theory ofmathematicalmorphology3

is a powerful tool for structural analysis.
Clinical Radiology (2004) 59, 1061–1069
gists. Published by Elsevier Ltd. All rights reserved.



Figure 1 (a) Coronal slice of T1-weighted cerebral MRI.
(b) Corresponding three-dimensional map based on the
pixel values.
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The model-based methods

Here an attempt is made to represent texture in an
image using sophisticated mathematical models
(such as fractal or stochastic). The model par-
ameters are estimated and used for the image
analysis. The disadvantage is the computational
complexity involved in the estimation of these
parameters.
The statistical approaches2

These are based on representations of texture using
properties governing the distribution and rela-
tionships of grey-level values in the image. These
methods normally achieve higher discrimination
indexes than the structural or transform methods.

The transform methods

The texture properties of the image may be
analyzed in a different space, such as the frequency
or the scale space. These methods are based on the
Fourier,4 Gabor5 or Wavelet transform.6 The Wave-
let transform is the most widely used because of the
ease with which it may be adjusted to the problem
in question.
Texture parameters

Medical images possess a vast amount of texture
information relevant to clinical practice. For
example, current magnetic resonance (MR) images
of tissues are not capable of providing microscopic
information that can be assessed visually. However,
histological alterations present in some illnesses
may bring about texture changes in the MR image
that are amenable to quantification through texture
analysis. This has been successfully applied to the
classification of pathological tissues from the liver,
thyroid, breasts, kidneys, prostate, heart, brain and
lungs.7–15

We describe the main parameters used in
texture analysis, selecting four categories of
parameter from the statistical class (which is
the most widely used for medical applications),
one from the model-based class and one from the
transform class. The structural class is omitted
because we did not find any example of its
application to medical images.

The most commonly used texture parameters
come from six main categories.
1.
 Histogram (statistical class)

2.
 Absolute gradient (statistical class)

3.
 Run-length matrix (statistical class)

4.
 Co-occurrence matrix (statistical class)

5.
 Auto-regressive model (model class)

6.
 Wavelets (transform class).

We describe those categories in more detail
below, and give examples of the sorts of measures
(parameters) that can be obtained from them.

Histogram

In digital images, the allowed grey-level values that
a pixel may assume are limited. They consist of
integer numbers ranging from 0 to 2bK1, where b
stands for the number of bits of the image (i.e. this
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will determine the amount of disk memory occu-
pied by each image pixel). For most digital images 8
bits are sufficient, and therefore the grey-level
values range from 0 to 255; but medical MR images
normally use 12 bits (which gives more definition of
the objects in the image), and therefore the grey-
level values range from 0 to 4095. Note that the
convention is to attribute lower values to darker
grey levels, and higher values to lighter grey levels.
Therefore 0 generally represents black, and white is
represented by 255 (in an 8 bits image) or 4095 (in a
12 bits image). Fig. 2 shows an example of a 3 bits
digital image, with 5!5 pixels.

The histogram of an image is the count of how
many pixels in the image possess a given grey-level
value. For a 12 bits image, this may be represented
by a graph with an x coordinate ranging from 0 to
4095, and a y coordinate representing the respect-
ive pixel count. Fig. 3 shows the histogram of the
image in Fig. 2.

From the histogram many parameters may be
derived, such as its mean, variance and percentiles.
The mean of the histogram gives us the mean grey-
level value of the image. The variance is a measure
of how far from the mean the grey-level values in
the image are distributed. For example, if there is
an image with 2 pixels with grey-level values 0 and
100, and another image also with 2 pixels with
values 49 and 51, the mean will be 50 for both
images. However, in the first case there is a huge
variance, since 0 and 100 are far from the mean,
whereas in the second case the variance is small,
since 49 and 51 are close to the mean value. A
percentile gives the highest grey-level value under
which a given percentage of the pixels in the image
are contained; for example, if the 1% percentile of
an 8 bits image is 10, the 1% of pixels in the image
has a grey-level value from 0 to 9.
Figure 2 Example of a digital image. (a) Image with 5!
5 pixels, with grey-level values ranging from 0 (black) to 7
(white). (b) Numerical representation of the image.
Absolute gradient

The gradient of an image measures the spatial
variation of grey-level values across the image.
Thus, if at a point in the image the grey level varies
abruptly from black to white, we have a high
gradient value at that point; whereas if it varies
smoothly from a dark grey to a slightly lighter grey,
we have a low gradient value at that point. The
gradient may be positive or negative, depending on
whether the grey level varies from dark to light or
from light to dark. However, since in general what
is of interest is whether we have an abrupt or a
smooth grey-level variation, the absolute gradient
is used (i.e. the sign is not taken into consider-
ation). Fig. 4(a) shows a coronal slice of a T1-
weighted cerebral MRI, and Fig. 4(b) shows the
corresponding absolute gradient. Note how the
gradient image emphasizes the contours of
the original one, and how it is strongest (whitest)
where the grey-level changes in the original image
are greatest.

Examples of texture parameters that may be
computed from the absolute gradient are, again, its
mean and its variance. The absolute gradient mean
will thus be a measure of the mean grey-level
variation across the image, and its variance a



Figure 3 Histogram of the image shown in Fig. 2.

Figure 4 (a) Coronal slice of T1-weighted cerebral MRI.
(b) Corresponding absolute gradient image.
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measure of how far from the mean these variations
are.
Run-length matrix

The run-length matrix is a way of searching the
image, always across a given direction, for runs of
pixels having the same grey-level value. Thus, given
a direction (for example, the horizontal direction),
the run-length matrix measures for each allowed
grey-level value how many times there are runs of,
for example, 2 consecutive pixels with the same
value. Next it does the same for 3 consecutive
pixels, then for 4, 5 and so on. Note that many
different run-length matrices may be computed for
a single image, one for each chosen direction. In
practice normally 4 matrices are computed, for the
horizontal, vertical, and two diagonal directions.
Fig. 5 shows the horizontal and one of the diagonal
run-length matrices corresponding to the example
image in Fig. 2. Since this image is small and there is
not much space for runs in it, most of the elements
of the run-length matrices are zero-valued. The
only non-zero-valued elements correspond to the
grey-level values 0, 2 and 7, which are the only
values giving runs in the selected directions.

Some parameters that may be computed from
the run-length matrix are the fraction of image in
runs and the short-run emphasis. The fraction of
image in runs is a measure of the percentage of
image pixels that are part of any of the runs
considered for the matrix computing, and the short-
run emphasis is a measure of the proportion of runs
occurring in the image that have short length.
Co-occurrence matrix

The co-occurrence matrix is a technique that allows
Figure 5 Example of horizontal and 458 run-length
matrices for the image shown in Fig. 2.



Figure 6 Example of a co-occurrence matrix for a 2-
pixels distance in the horizontal direction, computed for
the example image of Fig. 2.
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for the extraction of statistical information from
the image regarding the distribution of pairs of
pixels. It is computed by defining a direction and a
distance, and pairs of pixels separated by this
distance, computed across the defined direction,
are analyzed. A count is then made of the number of
pairs of pixels that possess a given distribution of
grey-level values. Each entry of the matrix thus
corresponds to one such grey-level distribution. For
example, let us define a distance of 3 pixels in the
vertical direction, and let us compute the corre-
sponding co-occurrence matrix for an 8 bits image;
for such an image, the allowed grey-level values
range from 0 to 255. The size of this matrix will then
be 256!256. Thus the element (0, 10) will
correspond to the number of pixel pairs that we
find in the image having intensity values 0 and 10
respectively, and which are separated by a 3-pixel
distance in the vertical direction. Conversely the
element (10, 0) will have exactly the same value,
since it will correspond to the number of pixel pairs
that we find in the image having intensity values 10
and 0, respectively, and which are separated by a 3-
pixel distance in the vertical direction.

As in the case of the run-length matrix, there
may be many co-occurrence matrices computed for
a single image, one for each pair of distances and
directions defined. Normally a set of 20 co-
occurrence matrices are computed, for distances
ranging from 1 to 5 pixels, in the horizontal,
vertical, and two diagonal directions. In Fig. 6, a
co-occurrence matrix for a distance of 2 pixels in
the horizontal direction, for the example image of
Fig. 2, is shown. Note that the matrix is symmetri-
cal, as expected.

Since the co-occurrence matrix analyzes the
grey-level distribution of pairs of pixels, it is also
known as the second-order histogram.

Examples of parameters computed from the co-
occurrence matrix are the contrast and the
entropy. The contrast of an image refers to how
much difference, or definition, there is between
grey-level values of different objects in the image.
The entropy measures the randomness or homogen-
eity of the pixel distribution with respect to length
or orientation, and it will take a higher value for a
more random distribution: it is a measure of the
amount of disorder in the image.
Figure 7 Example of a pixel neighbourhood that could
be used to compute the parameters of the auto-
regressive model.
Auto-regressive model

The auto-regressive model assumes a local inter-
action between image pixels in that the pixel grey-
level value is a weighted sum of the grey-level
values of the neighbouring pixels. In simpler words,
it is a way of describing shapes within the image, by
finding relations between groups of neighbouring
pixels. The auto-regressive parameters are simply
the set of weights used to establish these relations.
It is expected that these relations are unique for a
given type of object (or shape) in an image and,
therefore, they may constitute a way of character-
izing this object.

Fig. 7 shows an example neighbourhood (white
pixels) that could be used to characterize the grey-
level value of the centre pixel (black) through the
auto-regressive model. In that case, the assumption
made is thatevery pixel in the imagehas its grey-level
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value characterized by the grey-level values of
the surrounding pixels, according to the pattern
shown.
Figure 8 Wavelet transform of the image shown in Fig.
4(a). The top left corner of the image shows a low-
frequency, small-scale version of the original image,
whereas all other parts of the image show high-frequency
versions of the original image on different scales.
Wavelets

If a one-dimensional signal varies quickly in time, it
has a high frequency; if slowly, it has a low
frequency. For example in an electrocardiogram
we see that fast variations are associated with high
frequency, whereas slow variations are associated
with low frequency. If the grey-level value of a two-
dimensional image varies fast, that is has many
variations within a small piece of the image, we
associate a high spatial frequency to this part of the
image. In turn, if the grey-level value varies slowly,
being almost the same throughout a region of the
image, the region has a low spatial frequency. The
concept of fast or slow grey-level value variations is
dependent on the scale of the image region. An
example is the picture of a forest: if taken by a
satellite (very large scale), it looks like an almost
constant green stain; if taken from an aircraft flying
at a low altitude (smaller scale), it shows many
variations and details. The former picture would
have a lower frequency content, and the latter
would have a higher frequency content. In addition,
the direction of the variations must be taken into
account in two dimensions: an image with stripes in
the horizontal direction is different from an image
with stripes of the same size but in the vertical
direction.

Wavelets represent a technique that analyzes
the frequency content of an image within different
scales of that image. This analysis yields a set of
wavelet coefficients corresponding to different
scales and to different frequency directions. When
computing the wavelet transform of an image, we
associate to each pixel a set of numbers (the
wavelet coefficients) which characterize the fre-
quency content of the image at that point over a set
of scales. From these coefficients we can compute
texture parameters. Fig. 8 shows an example of a
wavelet transform for the image shown in Fig. 4(a).
The top left corner of the image shows a low-
frequency small-scale version of the original image,
whereas all the other parts of the image show high-
frequency versions of the original image on differ-
ent scales.

An example of a wavelet-derived parameter is
the wavelet energy associated with a given scale
and direction, so this parameter measures the
frequency content of the image on a given scale
and in a given direction.
Important considerations

The parameters described above give an idea of the
type of information that texture analysis may
produce from an image, depending on which
texture parameters provide the information sought.
Most applications use texture measures as a way of
classifying regions of interest in images, for
example to differentiate between healthy and
pathological tissue, or in order to separate different
anatomical structures. Therefore, the procedure
generally adopted is to compute a large set of
texture parameters, and then determine which of
them provides the differentiation required. This
may be done by simple inspection of the parameter
values, or differentiation by parameter group may
be performed through discriminant analysis.

There are commercial software packages such as
Mazda (https://www.eletel.p.lodz.pl/merchant/
mazda/order1_en.epl), developed by A. Materka
and his group under the Cost project (http://www.
eletel.p.lodz.pl/cost/cost_project.html), which
produce a large amount of texture parameters for
a given region of interest in an image, and there are
many other packages available to perform further
data reduction and analysis of the texture
parameters.

The effect of external factors on some texture
parameters must be taken into consideration
before using texture analysis techniques. An
example of an external factor is the grey-level

http://https://www.eletel.p.lodz.pl/merchant/mazda/order1_en.epl
http://https://www.eletel.p.lodz.pl/merchant/mazda/order1_en.epl
http://www.eletel.p.lodz.pl/cost/cost_project.html
http://www.eletel.p.lodz.pl/cost/cost_project.html
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tone variation present in MR images due to lack of
homogeneity of the radio-frequency field, which
results in different grey-level values for the same
tissue type. These changes in grey-level tones
affect the histogram of the image and its mean.
Applications

Texture analysis may be applied in a series of studies
of medical images. One application is the segmenta-
tion of a given anatomical structure, based on the
texture characteristics of the structure. However,
texture analysis is most important for those cases in
which change cannot be detected by direct inspec-
tion of the image. For example, in some conditions
the tissue of associated anatomical structures suffers
alterations. These can normally be detected by
histological examination, but sometimesnotby visual
inspection of the image of the tissue, whereas they
may be demonstrated by statistical analysis of the
pixel distribution in the image of the structure.

Most applications described above have been
performed on MR images because of the great
amount of detail provided by this technique.
Nevertheless, texture analysis of all sorts of images
has been and may be performed.

Segmentation of anatomical structures

SaeedandPuri16 analyzed texture features inorder to
segment the cerebellum, using T1-weighted three-
dimensional MRI of adult controls and patients. Alejo
et al.17 used neighbourhoodanalysis of texture-based
parameters of MRI for semi-automatic segmentation
of the hippocampus and corpus callosum.

Diagnosis of skeletal muscle dystrophy

In an earlier study using texture analysis, Herlidou
et al.18 compared texture with visual analysis of MRI
data for the diagnosis of skeletal muscle dystrophy.
They concluded that texture analysis can provide
useful information contributing to the diagnosis of
skeletal muscle disease.

Differentiation between healthy and
pathological tissue in the human brain

Kovalev et al.19 used textureparameters derived from
gradient vectors and from generalized co-occurrence
matrices for the characterization of texture of some
MR-T2 brain images, in order to demonstrate patho-
logical conditions with widespread manifestations,
resulting in the change in the textural appearance of
the brain. They used extended multisort co-occur-
rence matrices that involve intensity, gradient and
anisotropy image features in a uniform way, for
separation between the brain images of controls and
patients suffering fromwhite-matter encephalopathy
and/or Alzheimer’s disease. They also applied these
texture features to the segmentation of diffuse brain
lesions.20

Herlidou et al.21 used texture parameters based
on the histogram, co-occurrence matrix, gradient
and run-length matrix for the characterization of
healthy and pathological human brain tissues (white
matter, grey matter, cerebrospinal fluid, tumours
and oedema). They succeeded in distinguishing the
different brain tissues, and confirmed that MR
images, including those obtained during routine
procedures in three different MRI units, contain
tissue-specific texture features which can be
extracted by mathematical methods.

In a series of studies of T1-weighted cerebral MR
images, Bernasconi et al.7 and Antel et al.22,23

manipulated a combination of texture parameters to
determine cortical thickness and hyperintense T1
signal, and to model the blurring of the grey
matter/white matter interface. They managed in
that way automatically to detect lesions of focal
cortical dysplasia, some of which would have been
missed by the human eye. They assert that the
developed computer-based, automated method may
beuseful in thepresurgical evaluationofpatientswith
severe epilepsy related to focal cortical dysplasia.23

Mahmoud et al.24 used the texture analysis
approach based on a three-dimensional co-occur-
rence matrix in order to improve brain tumour
characterization. They carried out a comparative
study to evaluate the performance of this approach
compared with the two-dimensional approach, using
T1-weighted MRI of 7 patients with glioma to
distinguish between solid tumour, necrosis, oedema
and surrounding white matter. With the three-
dimensional approach they achieved better discrimi-
nation between necrosis and solid tumour as well as
between oedema and solid tumour. They did not
manage completely to separate peritumoral white
matter from oedema, nor far ipsilateral matter from
contralateral white matter, using either of these
methods. They suggest, however, that the proposed
three-dimensional approach could provide a new tool
for tumour grading and treatment follow-up, as well
as for surgery or radiation therapy planning.
Hippocampus and epilepsy

Yu et al.25 performed a study with patients with
unilateral temporal lobe epilepsy characterized on
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MRI by ipsilateral hippocampal sclerosis and an
apparently normal contralateral hippocampus.
They first ascertained the existence of texture
differences between normal (control) and sclerotic
hippocampi. Next they showed that the apparently
normal contralateral hippocampi could be classified
into three categories in terms of texture: appar-
ently healthy, similar to sclerosis; or different from
either healthy or sclerotic. They attributed these
findings to a certain degree of hippocampal altera-
tion, requiring further investigation to improve
characterization. Bonilha et al.8 and Coelho
et al.10 confirmed the findings using texture
parameters based on run-length and co-occurrence
matrices. A similar study was undertaken by Jafari-
Khouzani et al.,26 this time using wavelet-based
texture features in order to distinguish healthy
from pathological hippocampal tissue, aiming to aid
physicians in the determination of candidates for
epilepsy surgery.
Multiple sclerosis

Mathias et al.13 applied texture analysis to MRI of
the spinal cord in an attempt to quantify patho-
logical changes that occur in multiple sclerosis
(MS). Texture differences were detected between
normal controls and relapsing-remitting MS patients
before spinal cord atrophy was visually detectable.
They also found a significant correlation between
texture changes and disability.
Cervix lesions classification

Ji et al.12 used texture analysis for characterizing
and recognizing typical, diagnostically most import-
ant, vascular patterns relating to cervical lesions
from colposcopic images. They introduced a gen-
eralized texture analysis technique, where conven-
tional statistical and structural textural analysis
approaches were combined, thus creating a set of
texture measures that described the specific
characteristics of cervical textures as perceived
by medical examinations. With those measures they
demonstrated the effectiveness of the proposed
approach in discriminating between cervical tex-
ture patterns indicative of different stages of
cervical lesions.
Obstructive lung diseases

Chabat et al.15 used 13 texture parameters, derived
from the histogram, co-occurrence matrix and run-
length matrix categories, to differentiate between
a variety of obstructive lung diseases in thin-section
(CT) images. A set of CT images was obtained from
healthy subjects and from patients with panlobular
emphysema, centrilobular emphysema and con-
strictive obliterative bronchiolitis. They demon-
strated the feasibility of textural distinction
between those diseases, which cause decreased
attenuation of the lung parenchyma, and the lungs
of healthy subjects. They concluded that the
accuracy of the method was high, and suggested
that it should be included as one of the main CT
feature extractors for the automated detection of
obstructive lung diseases.
Conclusions

We have described here the technique of texture
analysis in medical images. Texture parameters are
simply a mathematical representation of image
features that can be characterized in words as
smooth, rough, grainy and so on. This implies that in
principle, texture analysis may be applied to any set
of image regions that may be differentiated by such
description.

In outlining the main categories of texture
parameters, and the several uses of each tech-
nique, MRI applications have been emphasized
except in the work of Ji et al. with colposcopic
images12 and Chabat et al. with CT.15 MRI appli-
cations dominate in the literature about this
technique because, although texture analysis is a
method devised to extract from medical images
additional information that is not easily depicted by
visual inspection, such analysis remains limited by
the restricted resolution of images. It is therefore a
promising method linked to future improvement in
the quality of medical images.

However, the technique is by no means limited to
MRI, and can be applied in the setting of different
image applications, taking into consideration the
limitations of each imaging method. Furthermore,
the application of texture parameters is not specific
to the illnesses discussed herein, but is helpful in
the investigation of other pathological conditions in
which imaging is an appropriate investigation
method.
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