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Abstract

This paper presents an object categorization method. Our approach involves the
following aspects of cognitive vision : machine learning and knowledge representa-
tion. A major element of our approach is a visual concept ontology composed of
several types of concepts (spatial concepts and relations, color concepts and texture
concepts). Visual concepts contained in this ontology can be seen as an intermediate
layer between domain knowledge and image processing procedures.

This paper details this approach which is composed of three phases: a knowledge
acquisition phase, a learning phase and a categorization phase. A major issue is
the symbol grounding problem (symbol grounding consists in linking meaningfully
symbols to sensory information). We propose a solution to this difficult issue by
showing how learning techniques can map numerical features to visual concepts.
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1 Introduction

This paper presents a cognitive vision approach designed for complex ob-
ject categorization. Both knowledge representation and machine learning tech-
niques are involved in the categorization process. The proposed approach is
designed for semantic interpretation of isolated objects of interest. Related
work on scene analysis issues (i.e. involving non isolated objects) can be found
in (1).

A long experience in complex object categorization (2) (3) has shown that
experts often use a well defined vocabulary for describing the object of their
domain. Based on that statement, results coming from the knowledge engi-
neering community can be applied to acquire expert knowledge. This expert
knowledge is used to guide object recognition.
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This approach raises the question of relations between language and percep-
tion. In (4), Xu explains that language is a way to develop object discrim-
ination capabilities. Our work is inspired by this claim : we aim at using a
conceptualization of the visual perception domain (a visual concept ontology)
to define object recognition strategies. Moreover, our approach can be brought
close to the procedural semantics (5) theory where visual concepts and their
labels are associated in the sense that they are alternative ways of gaining
access to same underlying procedures (segmentation, feature extraction and
learning modules).

Section 2 gives an overview of key issues and existing approaches in high-
level image interpretation. Section 3 gives a global point of view on the pro-
posed approach. Section 4 details the structure of a priori knowledge (i.e.
domain knowledge and visual concept ontology) involved the recognition pro-
cess. Section 5 is dedicated to image processing techniques used for achieving
categorization. Section 6 explains how visual concepts are learnt by learning
techniques. Section 7 presents an object learning algorithm and an object cat-
egorization algorithm. A discussion on our approach is given in section 8. We
finally conclude in section 9.

2 Related Work

In (6), an introduction to high-level bayesian image interpretation techniques
can be found. The author explains that bayesian analysis techniques are more
widely applicable and reliable that ad hoc algorithms. Such statistical models
are explicit and allow to evaluate confidence about conclusions. The difficult
task in the construction of bayesian models is to define prior distribution. In
particular, context (e.g. point of view, scale, acquisition conditions) is hard to
manage. That is why care is required in using statistical knowledge effectively
for a given specific problem.

A solution to invariance problems are local invariant image feature detectors
(7) (8). The main drawback of these techniques is that they are well adapted
to object (i.e. an instance of a given class) recognition and not to class recog-
nition. Preliminary work on the generalization of these techniques to class
recognition is starting (9).

Knowledge based vision systems have proven to be effective for complex object
recognition (2) and for scene understanding (10). They offer a great capacity of
reusability and extendability. Moreover, in knowledge based systems, domain
knowledge is clearly separated from image processing knowledge. This implies
a better tractability of the different sub-problems (i.e. image processing and
interpretation) encountered in image understanding. The major negative point



of these systems is that they rely on knowledge bases which are difficult to
produce and manage.

To achieve complex object recognition, we propose an intermediate approach:
to use a priori knowledge to structure prior distributions of relevant visual
features (i.e. texture, color, shape). A priori knowledge is used to perform a
focused learning of distinctive visual characteristics.

3 Proposed Approach

Our approach is composed of three main phases : (1) a knowledge acquisition
phase, (2) a learning phase, (3) a categorization phase. This section gives an
overview on the whole approach.

3.1  Knowledge Acquisition Phase

First comes knowledge acquisition issues which have been discussed in (11).
A dedicated knowledge acquisition tool has been implemented and allows to
perform the following tasks:

e domain taxonomy acquisition (i.e. hierarchy of domain classes)

e ontology driven visual description of domain object classes which leads to
a more complete domain knowledge base

e image sample management (i.e. annotation and manual segmentation of
samples of object classes of interest)
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Fig. 1. Knowledge Acquisition Phase Overview

As seen in fig. 1, the knowledge acquisition process leads to a knowledge base
in which a set of domain classes are described by visual concepts. Manually
segmented and annotated image samples of domain objects are also obtained.
Sample annotation consists in labeling a set of sample images by a domain
object class name.



3.2

Learning Phase

Expert knowledge is acquired during the knowledge acquisition process. A
remaining important issue is the symbol grounding problem (12). The learning
phase fills the gap between symbols used during knowledge acquisition and
manually segmented and annotated sample images. As seen in fig. 2, three
modules are involved in the object learning process.

(1)

The main module is the object learning module which controls the other
modules. The learning process is initiated by a learning request which
contains a list of classes of the domain taxonomy. For specific applica-
tions, some classes are not relevent. Therefore, it may be needed to restrict
learning process to a subpart of the whole domain knowledge. This mod-
ule first retrieves domain class samples (i.e. a set of regions of interest
annotated by a domain class instance).

The feature extraction module accepts feature extraction requests sent
by the object learning module and computes features and segmented
samples.

The visual concept learning module trains a set of classifiers by using
features extracted by the feature extraction module. These classifiers are
trained to the recognition of visual concepts used for the description of
domain classes. The output of the object learning module is a knowledge
base augmented with the trained classifiers.
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Fig. 2. Object learning phase overview
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Fig. 3. Object categorization phase overview

Fig. 4. Image of an isolated pollen grain

3.3 Categorization Phase

Fig. 3 gives an overview of the proposed object categorization phase. This
phase is based on three modules:

(1) The object categorization module is the central module of the catego-
rization architecture. It processes categorization requests so as to pro-
duce categorization results. A categorization request is composed of an
image containing an isolated object of interest (see fig. 4). Information
concerning context (e.g. acquisition device, date) is also integrated in the
categorization request. To perform object categorization, the object cate-
gorization module sends sequentially two different types of requests to the
segmentation module and to the feature extraction module. Recognition
of visual concepts is done by using classifiers trained during the learning
phase and contained in the augmented knowledge base. Categorization
result contains one or several domain object classes which match recog-
nized visual concepts associated with the current object to be recognized.



(2) The segmentation module receives segmentation requests. The answer to
a segmentation request is a set of pixels of interest inside a region of
interest. A segmentation request is composed of the region of interest
where pixels of interest have to be extracted. A symbolic description
(in terms of visual concepts) of the expected segmentation result is also
integrated in the request.

(3) The feature extraction module accepts feature extration requests sent by
the object categorization module. The feature extraction module trans-
forms segmented pixels of interest into numerical features (e.g. Gabor
features for texture analysis).

4 A Priori Knowledge

4.1 A Visual Concept Ontology

As defined in (13), an ontology is a formalization of a conceptualization. An
ontology defines the semantics of non-logical primitives used in a knowledge
representation language. An ontology is composed of :

e a set of concepts (C) (e.g. geometric concepts)
e a set of relations(R) (e.g. spatial relations)
e a set of axioms (e.g. transitivity, reflexivity, symmetry of relations)

Two partial orders <¢ and <g define the concept hierarchy and the relation
hierarchy, respectively. An ontology is supposed to be the support of reasoning
mechanisms.

In this section, we propose a visual concept ontology. This ontology can be
considered as a guide which provides a vocabulary for the visual description
of domain classes. It is important to note that the proposed ontology is not
application-dependent and should be considered as an extendable basis. We
have structured this ontology in three main parts. The first one contains tex-
ture concepts, the second one contains color concepts and the last one is made
of spatial concepts. Each part of this ontology is detailed in the next subsec-
tions.

4.1.1  Texture Concepts

This part of the ontology has been inspired by results from the cognitive
science community.

The experiment conducted in (14) identifies three main dimensions in the



texture perception cognitive process. Each perceptual dimension constitutes
an important element in texture perception. Each perceptual dimension is
seen as an abstraction of a set of visual concepts (Fig. 5). From this study, we
have built an ontology of texture concepts. Note that quantifiers (e.g. Non,
Average, Strong) are also integrated in this ontology and can be used to give
a finer visual description.
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Fig. 5. Texture concept hierarchy

4.1.2  Color Concepts

This part of the ontology is derived from the ISCC-NBS (Inter-Society Color
Council-National Bureau of Standards) color dictionnary. An interesting re-
flexion on the validity of this dictionnary is given in (5). Three kinds of notions
are included: hue, brightness and saturation concepts. There are 28 hue con-
cepts (Table 1) which can be combined with five brightness concepts (Very
Dark, Dark, Medium, Light, Very Light) and four saturation concepts ( Gray-
ish, Moderate, Strong, Vivid). Certain combinations of brightness and satura-
tion concepts have a perceptual meaning. For instance, the concept Brillant
is an association of the Light and Strong concepts. Axioms are contained in
the ontology so as to express those kinds of associations.

4.1.83  Spatial Concepts

This part of the ontology is used for describing domain objects from a spatial
point of view. A part of the hierarchy is composed of geometric concepts that
can be used to describe the shape of domain objects (fig. 6). Three other parts
of the ontology contains position,orientation and size concepts. A formalization
of a similar approach based on a combination of geometric shapes can be found
in (15). The size of an object can also be described and quantified with a set
of quantifiers. Note that quantification can be done in an absolute way or
relatively to another concept. This means that the size of object A can be
described as being important relatively to object B. The notion of elongation
is also present and can be quantified. We have also added a set of spatial
relations based on the RCC-8 model (16) that can be used to define relations
between objects and their subparts.

These relations are enumerated in Table 2 and graphically represented in fig.



Red Purple
Reddish Orange | Reddish Purple

Orange Purplish Red

Orange Yellow | Purplish Pink

Yellow Pink

Greenish Yellow | Yellowish Pink

Yellow Green Brownish Pink

Yellowish Green | Brownish Orange

Green Reddish Brown
Bluish Green Brown

Greenish Blue Yellowish Brown
Blue Olive Brown

Purplish Blue Olive

Violet Olive Green
Table 1
Set of hue concepts
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Fig. 6. Geometric concept hierarchy

4.1.4  Context Description

Experts often observe the objects of their domain in precise observation con-
ditions. For example, when using a microscope, magnification or lighting con-
ditions are controled. Providing contextual information is absolutely neces-
sary. Context information is the link between domain knowledge and image



RCC-8 relation | Meaning

DC(X,Y) X disconnected from Y
EC(X)Y) X externally connected to Y
EQ(X,Y) X equals Y

PO(X)Y) X partially overlapping Y
TPP(X,Y) X tangential proper part of Y

TPP-1(X,Y) X has tangential proper part Y

NTPP(X)Y) X nontangential proper part of Y

NTPP-1(X,Y) | X has nontangential proper part Y

Table 2
RCC-8 relations and their meaning
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Fig. 7. RCC-8 graphical representation

samples resulting from the acquisition process. Context conditions the result-
ing acquired images. This implies a relation between the visual description
of image samples and the context of acquisition. Context knowledge avoids
building incoherent sets of image samples. For instance, it would not make
sense to gather images of a similar object acquired with different types of
sensors. Context depends on the application domain. That is why the context
hierarchy given in fig. 8 can be extended and adapted for a particular domain.
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Fig. 8. Context concept hierarchy



4.2 Domain Knowledge

This knowledge belongs to the domain of interest and is shared by the spe-
cialists of the domain (e.g. biologists, astronomers). Domain knowledge is in-
dependant of any vision layer and can be reused for other purposes. Domain
knowledge is structured as a hierarchy of classes (i.e. a taxonomy). As seen in
fig. 9, composition links allow to define part-whole relations between domain

classes.
Bi ol ogi cal ’
Organi sm Poaceae

——J> Specialization relation
—® Conposition relation

Poaceae

Fig. 9. Domain knowledge structure: on the left, a taxomony, on the right a parton-
omy

An example of a domain class formalized with the frame formalism can be
found in table 3. The SuperClass attribute allows to define specialization
relations. The SubParts attribute defines composition relations. There are
three categories of attributes related to visual description:

(1) spatial attributes : geometry; size; orientation; position
(2) color attributes : hue; brightness; saturation
(3) texture attributes : repartition; contrast; pattern

Each attribute has a defined type and a set of possible values. For instance,
attribute hue is of type HueConcept and has for value Pink. The relation
between possible values and attribute types is a specialization relation.

5 Image Processing

5.1 Segmentation

Segmentation needs have been introduced in section 3. The goal of this paper
is not to give much details on this specific problem. Let us consider that
the segmentation module is able two perform different types of segmentation
tasks. The first segmentation task is isolation of the object of interest from

10



Class POACEAE
{
SuperClass: POLLENWITHPORI
SubParts:
PORI PORIL [PORIWITHANULUS)|
SpatialAttributes :
GeometricConcept geometry : [CircularSurface EllipticalSurface]
SizeConcept size : [ImportantSize]
ColorAttributes :
HueConcept hue: [Pink |
BrightnessConcept brightness: [Dark]
TextureAttributes :
TexturePatternConcept pattern: [Granulated Texture]
TextureContrastConcept contrast: [Slight]
SpatialRelations :
SpatialRelation rl: [NTTP(POACEAE,PORI1) TTP(POACEAE,PORI1)]
}
Table 3

High level description of domain class poaceae. Visual concepts provided by the
ontology are in italic. Attribute names are in bold face. Knowledge provided by
the expert is in SMALL CAPS.

the background. The second segmentation task is the extraction of object
subparts.

A segmentation request is composed of two elements: a list of visual concepts
and the region of interest where segmentation is performed. Segmentation is
guided by visual concepts included in the segmentation request. The reader
can refer to (2) and (17) to understand how program supervision techniques
are used to control and reuse image processing algorithms.

5.2 Feature Management and Fxtraction

Section 4 has introduced the structure of the proposed visual concept ontology.
During the classification of a given object, numerical features are computed.
To be interpreted as visual concepts, a link must be established between com-
puted numerical features and symbolic visual concepts. As explained in sub-
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Class GeometricConcept
{
Superclass: Spatial Concept
GeometricFeaturesAttributes:
Float length [0, 4+00]
Float width [0, +o0]
Float lengthWidthRatio [0, +o0]
Float area [0, +00]
Float formFactor [0, +00)
Float perimeter [0, +00]
Float roundness [0, +1]
Float compactness [0, +1]
}
Table 4

An Example of the Visual Concept GeometricConcept. Some geometric features are
given. These features are used during the visual concept learning process. Restric-
tions on the domain of the features are also defined.

section 4.2, several categories of visual concepts are managed: geometry; size;
orientation; position; hue; brightness; saturation; repartition; contrast; pat-
tern. We propose to create a sets of numerical features associated with these
visual concepts.

Numerical features depend on available feature extraction algorithms. It is up
to the image processing expert to make relevent association between available
feature extraction algorithms and visual concepts. As seen in table 4, the con-
cept GeometricConcept can be represented in a frame formalism. Attributes of
a given visual concept are inherited by its subconcepts (e.g CircularSurface).

Visual concepts feature attributes are computed by the feature extraction
module. For instance, numerical features associated with the concept Tex-
tureConcept are statistical moments and Gabor Features. Color characteriza-
tion is done with histograms and color coherence vectors (18). These features
are used to learn and recognized visual concepts, this learning process is de-
scribed in the next section.
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6 Visual Concept Learning

6.1 Overview

Although visual concept semantics is provided by the visual concept ontol-
ogy, symbol grounding remains an issue. The visual concept learning module
is used to fill the gap between ontological concepts and image level. As ex-
plained in fig. 10, the visual concept learning module learns a set of classifier
to the recognition of each visual concept. This learning is done thanks to a set
of training vectors computed by the feature extraction module computed on
manually segmented and annotated regions of interest. These features vectors
are included in the visual concept learning request. The visual concept ontol-
ogy is used in this module because the learning process is done in a hierarchical
way by using the ontological tree structure. Learning has to be focused on spe-
cific problems. Therefore, a visual concept is also included in the request so as
to define the subpart of the ontology which has to be learnt. For instance, if
the visual concept GeometricConcept is inside the request, only this concept
and its children are involved in the learning process.

Tr ai ned
Classifiers

Vi sual
Concept C\gnscueaplt
Lear ni ng Ont ol ogy
Modul e

Vi sual
Concept

Lear ni ng
Request

Fig. 10. From a set of labeled regions to a set of trained classifiers

6.2 Problem Statement

The proposed architecture is designed to learn a set of visual concepts used
during knowledge acquisition. A training set S; is associated with each visual
concept C; € C. A training set is a set of N labeled vectors x; € R™ computed
by the feature extraction module described in section 3. Vectors are labeled
by y; € {—1,1}. y; = 1 means that x; is a representative sample of C;. y; = —1
means that x; is a negative sample of C;. More precisely, negative samples of C;
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are positive samples of brothers of C;. This means that we use the hierarchical
structure of the ontology to obtain simpler and focused classification problems.

A classifier d; is associated to each concept C; (see table 5). P(C;|x) is the
posterior probability of C;. P(—=C;|x) is the posterior probability of =C;. We
also introduce a reject distance class R; so that P(C;) + P(=C;) + P(R;) =
1. This distance reject class allows to take into account vectors observed in
unexpected regions of R™. The probability law of x is defined as p(x) =
p(x|Ci)P(Ch) + p(x[=Ci) P(=C;) + p(x|Ri) P(R;).

We define two thresholds agmp €]0.5, 1] and agist €]0, 1. gmp is the ambiguity
reject threshold and defines the degree of confidence needed to take the deci-
sion of recognizing a concept. g is the distance reject threshold. Distance
reject is inferred from p(x) and oy and classifies x into R;. Distance reject
means that x is unlikely to belong to both C} and —C} and might belong to
a concept that has not been learnt yet. For more details about the distance
reject notion, see (19).

d; (x) Definition

C; recognized P(Ci|x) > agmp

C; not recognized | P(—=Cj|x) > aamp

Ambiguity reject | maz{P(C;|x), P(=C;|x)} < qamsb

Distance reject p(X) < ugist

Table 5
Decision types

The following subsections aim at presenting a methodology designed to build
each classifier d;. Each classifier is trained to classify the training vectors x;
labeled by y; such that y; = 1. This training is done against training vectors x;
labeled by y; = —1 . This approach is a one-versus-rest classification scheme.
This means that each C; is learnt and classified against all its brothers.

The learning module is made of three sub-modules : a training set building
module, a feature selection module and a training module (Fig. 11). Each of
these modules is detailed in the next subsections. The main algorithm is given
in algorithm 1. This algorithm is executed when a visual concept learning
request is sent to visual concept learning module. It sequentially calls the
training set building module, the feature selection module and the training
module. This algorithm takes two parameters. The first one is a set of feature
vectors labeled by visual concepts. The second one is a visual concept C; (e.g.
GeometricConcept, HueConcept) which defines a subpart of the ontology. The
result of algorithm 1 is a set of classifiers trained to the recognition of C; and
its children.

14
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Fig. 11. Learning module

Algorithm 1 VisualConceptLearning(X, C;)
TrainingSet Building(X, C;, S)
FeatureSelection(C;, S, S")

Training(C;, S’, D)
return D

6.3 Training Set Building Module

As explained in previous subsections, each visual concept used during knowl-
edge acquisition has an attached classifier. The first step is to build training
sets to train classifiers associated with visual concepts. For each visual con-
cept used during visual description, image processing algorithms compute a
set of feature vectors. Regions of interest are used as an input of the feature
extraction module.

As shown in Fig. 11, the visual concept learning module is designed to process
a visual concept learning request. The set of training vectors contained in a
visual concept learning request (X = {x;, C;}) is computed by the feature
extraction module (see Fig. 2). Vector labels are provided by the ontology
driven description of domain classes. Note that two similar vectors can be
labeled by several visual concepts: we are in a multi-label case. The labeled
vectors are then processed by the training set building module. P; is the set of
representative training vectors of a visual concept C;. N; is the set of training
vectors computed on negative samples of a visual concept C;. The training
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set associated with C} is noted ;. The training set building module aims at
computing S; (feature vectors labeled by +1 or —1) for each C;. This implies
that the hierarchical structure of the ontology has to be used to compute each
Si.

P =U; {(x;,+1) | C; 2 Ci}
N; = U; {(x35,—1) | C; Z¢ (Ck, € brothers(C;)) A (x;,+1) € P}
S; =P, UN;

6.4 Feature Selection Module

Feature selection is hierarchically performed by Algorithm 2. FeatureSelection-
Algorithm function applies a feature selection algorithm to each S; to obtain
each S7'. We currently use a Sequential Forward Floating Selection (SFFS)
Algorithm (20). This method iteratively adds or removes features until some
termination criterion is met. Bhattacharyya distance (21) between classes is
used as a separability criterion. This implies that features used to recognize
a visual concept may be different from features used for the recognition of
another concept.

Algorithm 2 FeatureSelection(C;, S, S")
children < getChildren(C;)
for all C; € children do
S« FeatureSelection Algorithm(S;)
S S'US;
if hasChildren(C;) = true then
FeatureSelection(C}, S, S')
end if
end for

6.5 Training Module

As detailed in Algorithm 3, the learning process is guided by the hierarchical
structure of the ontology. Algorithm 3 is initially called with a visual concept
C; such as GeometricConcept and S’ = {S;}. The set of classifiers D = {d;} is
built recursively. Learning of each descendant of C}; is performed hierarchically.
The trainClassifier function first loads .S;, then creates and trains a binary
classifier d; to the recognition of C;. We currently use multi layer perceptrons
and k nearest neighbors as binary classifiers. Next section shows how {di} is
used to learn and recognize domain classes.

16



Algorithm 3 Training(C;,S’, D)
children « getChildren(C})
for all C; € children do
d; < TrainClassifier(S?)
if hasChildren(C;) = true then
Training(C;, S’, D)
end if
end for

6.6 Results

This subsection illustrates an application of the classifiers trained by the vi-
sual concept learning module. A cognitive experiment has been performed in
(14) : a subset of 56 Brodatz texture images has been given to 20 persons who
were asked to classify them in different clusters. A few samples of the Brodatz
texture set are given in fig. 12. The clusters were formed by evaluating the
following symbols (between 1 and 9): contrast, repetitveness, granularity, ran-
domness, roughness, density, directionality, complexity, coarseness, regularity,
orientation.

To perform the learning process described in this section, we have used tex-
ture related visual concepts associated with each Brodatz image. Each image
is splitted in 16 pieces so as to obtain 128x128 images. Available texture
image analysis algorithms (i.e. Gabor filters, auto-correlation matrices and
cooccurence matrices) have been applied to obtain a training set. This train-
ing set has been processed by the training set building module. The feature
selection module has reduced the number of features from 127 to 20. The total
number of training vectors is 896 (56x16). Classification results presented in
table 6 have been obtained by N-fold cross-validation (N=56). This evalua-
tion approach consists in dividing the training set in N subsets. Then, feature
selection, training, and classification are repeated N times. At each step, a
subset is selected and used for obtaining classification results. The remaining
N-1 subsets are used by the learning module. Results are the average of the N
classification results obtained by using multi layer perceptrons classifiers with
ambiguity reject activated. Classification results at the intermediate level of
the texture ontology (i.e. Repartition, Contrast, Pattern) allow to see how
main distinctive properties of image samples are recognized.

17



Fig. 12. Brodatz texture samples

Concept False Positive | False Negative | True Positive
Repartition 2.81% 0.2% 99.8%
Contrast 19.9% 27.3% 72.7%
Pattern 21.9% 24.2% 75.8%
Repetitive 25.3% 6% 94%
Random 17.8% 24.1% 75.9%
Regular 23.9% 13.1% 86.9%
Oriented 7.8% 2.2% 97.8%
Uniform 23.3% 1.2% 98.8%
Directional 19.9% 27.3% 72.7%
Granular 8.8% 0% 100%
Non Granular | 22.1% 29.1% 70.9%
Non Repetitive | 21.2% 36.9% 63.1%
Non Random | 12.7% 26.5% 73.5%

Table 6
Mutli Layer Perceptron based classification results

7 Object Learning and Categorization Algorithms

7.1 Object Learning Algorithm

As seen in fig. 13, learning process of domain classes is composed of three
main steps. This algorithm is located in the object learning module (section
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3) and learns the visual concepts used as values of domain classes attributes
(e.g. size, hue, pattern).

(1)

(2)

7.2

The first step consists in getting positive and negative samples of the
domain class which has to be learnt. To perform this task, manually
segmented and annotated samples are used.

The second step consists in extracting features associated with attribute
values (e.g. C; =CircularSurface). Feature extraction is performed by
the feature extraction module. For each attribute value, a set of positive
feature vectors is obtained. The set of negative training vectors is labeled
by not(C;). A recursive call is needed in order to learn the description of
subparts of the current class.

Third comes visual concept learning which has been described in the pre-
vious section. Algorithm 1 is called for each category of visual concept (i.e.
spatial attributes : geometry, size, orientation, position; color attributes:
hue, brightness, saturation; texture attributes: repartition, contrast, pat-
tern).

Object Categorization Algorithm

Object categorization algorithm structure is given in fig. 14. This algorithm
is divided in five steps. It tries to match an unknown object to be categorized
with one or several classes of the domain. Matching is first performed at a local
level. This local matching consists in comparing expected visual concepts and
visual concepts computed on the unknown object to be classified. The global
matching consists in combining the local matchings performed at the local
level.

(1)
(2)

The categorization process is initiated by a categorization request which
contains an image of the object to be classified.

Object of interest has to be segmented from background. If the algorithm
tries to classify a subpart, the segmentation task consists in extracting
the subpart from the main object. In both cases, a segmentation request
has to be sent to the segmentation module.

Then comes local matching between current class attribute values (e.g.
CircularSurface for attribute geometry) and visual concepts recognized
by the classifiers trained during the learning process. Features used for
visual concept recognition are provided by the feature extraction module.
The result of local matching is a set of probabilities associated with each
attribute value. If the attribute is a subpart, a recursive call has to be
made so as to categorize it.

This step consists in evaluating if current class matches the object to be
recognized. This matching is done by combining probabilities computed
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Add current class sub-classes in list

Fig. 13. Simplified version of object learning algorithm

during local matching.

(5) If object matched current class, the classification algorithm tries to go
deeper in the domain class hierarchy. If matching fails, current class is

dropped.

8 Discussion

The proposed approach allows semantic and explicit object categorization.
The global architecture does not act as a black box and is able to explain

categorization results.

One strong point is the modularity of the approach. New algorithms can be
integrated in the segmentation module and in the feature extraction module.
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Fig. 14. Simplified Version of object categorization algorithm

The same goes for the visual concept learning module which currently uses
k-nn, multi layer perceptrons and support vector machines. Changes in the
low-level part of the architecture has no consequence on the high-level part.

One of the main advantages of our approach is that the visual concept ontology
acts as a user-friendly intermediate between the image processing layer and
the expert. Another interesting aspect is that the ontology can be used to
describe objects of different domain of expertise. It is up to the learning layer
to ground symbolic concepts in a different way.

At the segmentation level, a major remaining challenge is to define precisely
the feedback to the segmentation level when object categorization fails. We
are also planning to use program supervision techniques (see (17)) combined
with learning techniques to improve segmentation quality. We have explained
that visual concepts are included in segmentation requests. Trained classifiers
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associated with these visual concepts should be used to validate segmentation.

The proposed approach leans on a knowledge acquisition phase which has to
be as complete as possible in order to make the learning phase and the cat-
egorization phase efficient. This raises the question of the balance that has
to be found between knowledge which has to be provided by the expert and
knowlege deduced from images samples. In the current implementation (see
(11)), the expert has to provide an important amount of knowledge. An in-
teresting future direction is the use of unsupervised learning techniques which
could guide the expert by automatically filling class attributes. Indeed, simi-
larity between samples could be used to infer similiar attribute values between
classes.

9 Conclusion

This paper presents an original approach to complex object recognition. We
mix the explicit aspect of knowledge based approaches with machine learning
techniques which allow mapping between symbols and pixels. This approach is
structured in three main phases. A knowledge acquisition phase which consists
in describing a set of domain classes with visual concepts provided by a visual
concept ontology. This ontology is composed the following types of visual
concepts : spatial concepts and relations, color concept and texture concepts.
The result is a domain knowledge base.

An object learning phase follows the knowledge acquisition process in order
to obtain a knowledge base augmented by a set of classifiers trained to the
recognition of the visual concepts used for the description of each classes.

The categorization phase tries to match an unknown object with one or several
domain classes. The matching is done between visual concepts computed on
the unknown object and visual concepts used for the description of domain
classes.

There are several remaining issues. A good object segmentation as well as
good subpart segmentations are needed in this approach. For some specific
applications, this hypothesis is reasonable. In general, segmentation remains a
major issue. We plan to use visual concepts, program supervision and learning
techniques to deal with this problem. The visual concept ontology provides an
efficient guide for knowledge acquisition but unsupervised learning techniques
could make this task easier.
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