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Abstract—we propose a new model for call arrival process on 

VoIP tandem networks under heavy traffic condition. Based on 

empirical evidence, such call arrivals can be modeled as linear 

Gaussian processes. We show that this approach can provide a 

very intuitive and accurate representation for different traffic 

patterns. In addition, the Gaussian approximation allows finding 

explicit mathematical equations for the model parameters, and 

provides easy model validation and significance testing. The 

model is illustrated by using hundreds of millions of call records 

collected from real tandem network in the U.S.. We use least-

square estimation method to build the model and conduct 

goodness-of-fit tests to validate it. We achieve a coefficient of 

determination, R
2
, of 0.9973 which means that 99.73% of the 

variability in the data is explained by the proposed model. The 

significance of the proposed model is confirmed empirically by its 
accurate prediction of future traffic. 

Keywords-VoIP traffic engineering; linear gaussian process; 

traffic modeling, call arrival rate 

 

I. INTRODUCTION 

A common assumption in telecommunication traffic 
engineering is that calls arrivals follow a Poisson process. In 
fact, this assumption has been used by engineers for decades to 
design phone systems and networks. Inspired by this 
assumption, Erlang model [1] [2] in addition to several other 
models [3][4][5] have been proposed to fit traffic on different 
networks. Because of the flexible and dynamic nature of 
modern networks, call arrivals are rarely stationary and are 
often subject to both external events (holidays, weather, etc.) 
and to intrinsic factors (time of the day, day of the week, etc.). 
Therefore, the traditional traffic engineering models fall short 
in capturing the characteristics of modern traffic patterns.   
Non-homogeneous Poisson (NHP) processes provide more 
flexible and quite adequate models that can take into account 
the effects of different factors and variables that shape the daily 
pattern of call arrivals. In [6] the authors proposed using a NHP 
process with piecewise constant rate to model call arrivals on 
call center, they provided mathematical as well as empirical 
evidences for the advantages of NHP approach over the 
traditional Poisson approach.  Also in our previous work [7] we 
presented a detailed framework on how to model call arrival 
rate as a NHP process and find mathematical functions that 
capture traffic pattern.    

Fitting NHP models to the data is usually done through the 
method of maximum likelihood estimation. However, since the 
log-likelihood function is a nonlinear function of the model 
parameters, it is impossible to obtain explicit formula of the 
optimal parameters which can only be obtained through 
numerical optimization methods such as Fisher scoring or 
Gauss-Newton algorithms. In addition, NHP models describe 
the effects that factors and variables have on the process 
intensity function (represented in this case by the call arrival 
rate) not on the call arrival itself, so the model might fall short 
from providing a cause-effect interpretation that is usually 
expected from models describing physical phenomena. 
Furthermore, the NHP model parameters cannot be explicitly 
expressed as functions of the call arrival data and hence lack 
physical meaning.  

Ideally engineers would like to use a model that can be 
easily fit to the data, that is directly related to the systems 
factors and variables and whose parameters have a physical 
meaning. Generalized linear models, such as the Poisson, 
which are used to fit discrete stochastic processes such as the 
number of calls, lack these simplistic characteristics. Gaussian 
linear models on the other hand benefit greatly from such 
properties. In fact, if  we let N(t) denote the number of calls that 
arrive between time t and (t-1) then we can write the model as:  

                                                              
 

Where     and     are the expected number of  calls between 
t and (t-1) and their variance at time t.      is the sampling 
error at time t which represents the random component of the 
number of calls and is assumed to follow a standard Gaussian 
distribution.   

Advantages of using a Gaussian model are many. For instance 
tests of significance for both the parameters and the model can 
be easily constructed and assumptions related to model 
building can be easily checked and validated. We can also 
build confidence intervals for future observations that allow us 
to predict the system behavior.  

However, the simplicity and benefits of using the Gaussian 
model does not justify its accuracy and adequacy to describe a 
phenomenon that is perfectly fit by a Poisson process. The 
validity of such model resides in the fact that Poisson Process 
behave like a Gaussian process when its expected value is large 
[8].  Such is the case of our system which operates under heavy 
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traffic conditions, thus making the number of calls sufficiently 
large for the Gaussian approximation to be appropriate.  The 
accuracy of such approximation is is a direct consequence of 
the Berry-Esseen Theorem which puts a bound on the 
discrepancy between certain distributions and the Gaussian 
distribution. In the case of the call arrival process, the 
difference between the Poisson distribution and its Gaussian 
approximation at time t, is inversely proportional to the square 
root of the expected number of calls at that time, as shown in 
the Berry-Esseen equation below [12]:  

                                           
      

   
       

 

For example, if the phone system receives 100 calls during a 
time interval, then the approximation error is less than 0.072, 
which is a quite tolerable bound. Each one of the tandem 
offices from which the data for this study was collected 
receives millions of calls every day making the Gaussian 
approximation much more applicable. A brief description of 
the tandem network is given in [7]. A summary of the number 
of calls received during a typical week on one Tandem central 
office in the network under study is given in Table 1below. 

TABLE 1. SUMMARY OF CALL ARRIVALS IN ONE WEEK 

Day of the week Total number of calls 

Sat 7,642,482 

Sun 5,568,602 

Mon 9,629,297 

Tue 9,667,976 

Wed 9,528,640 

Thu 9,689,319 

Fri 10,466,019 

 

Based on the above approximation bound and observations in 
Table 1, it would surely be safe to assume a Gaussian 
distribution for the call arrival rate throughout our analysis of 
the VoIP tandem traffic. Moreover, as with any model building 
that requires making assumptions, we will check the model’s 
adequacy through both goodness-of-fit tests and through split-
sample validation and we will confirm the validity of the 
assumptions. 

II.  MODEL STRUCTURE    

We base this study on hundreds of millions of call 
information collected over several months from an IP tandem 
network. Our modeling methodology is applicable to any VoIP 
carrier or SIP trunking solution that has heavy traffic.  

A. Data collection and processing 

The purpose of the Tandem network is to interconnect 
different central offices [7]; therefore the major characteristic 
of such network is that it usually handles huge amounts of 
traffic. The legacy PSTN is connected through TDM trunks, 
and VoIP customers are connected via IP links (Sip Trunk 
groups). 

The network has an IP core which is used to interconnect 
different tandem switches. It is important to notice that all 
traffic (wireless and landline) will be converted to VoIP if 
needed to be transferred from one office to another. The 
transport IP network does not have a blocking concept by 
nature, so there has to be a call admission control mechanism in 
order to provide blocking and hence guarantee the quality of 
calls [10] [11].  

 

In this research, we follow the same procedure of data 
processing and aggregation we explained in [7]. Modeling call 
arrivals as Gaussian process requires fitting time-dependent 
function that describes the variation of call arrivals. The 
function found in this step might vary from one system to 
another depending on the nature of traffic (business, residential, 
enterprise, or mixture) and the scope and requirements of the 
engineering process. In this study, we show an example of 
using real data to derive a Gaussian time function that takes 
into consideration the periodic patterns and daily effect shown 
in Figure 1, we propose a model for the call arrival mean 
represented by a time-dependent function     . 

B. Building the model 

Throughout the different days of the week, we notice that a 
similar pattern occurs regularly unless that day falls during the 
week-end or on a special day, where the pattern changes in 
shape and in magnitude. This pattern looks like a combination 
of sinusoidal waves, and since we are studying the behavior of 
calls number per hour, the period length is       hours, we 
consider the frequency           Notice that if we consider 
the number of calls during a minute the period becomes 
        minutes, while if we study the number of calls per 
second we need to use           seconds. Hence, because 
of the nature of our call arrival data and the shape of the graph 
that represents it, we are inspired to construct a model that 
describes the variation of call arrival rates during a week. Our 
model takes into consideration the daily arrival patterns and has 
the time-dependent mean function of: 

                                     

 
 

   
         

 

   

      

 

   
         

   

   
          

      

 

   
         

   

   
                                     

 

The sine and cosine functions are used to build the periodic 
variation into the model. For a function with period T, there are 
T/2 possible cycles since harmonics with higher frequencies 
(i>T/2) are aliased to frequencies between 0 and 0.5 

The function         is the Day Indicator where       

with 1 corresponding to Saturday, 2 to Sunday,…, and 6 to 
Friday.        assumes the value 1 if    the day represented by 

j and 0 otherwise. The indicator function corresponding to the 
seventh day is intentionally removed to avoid having a model 

with linearly dependent variables.  The coefficients     and     

are parameters that represent the effect of the interactions 

between the indicator function       and the harmonics 

          and           respectively. Adding these interaction 
terms allows us to investigate the relationship between a given 



harmonic term and the number of calls in a given day. The 

effects of the interactions coefficients      and     are different 

from those of    and    which represent the effects of harmonic 
terms on the call numbers throughout the week. 

Since the empirical data does not exhibit non-constant 
variability due to sampling error, we can safely assume that the 
model is homoscedastic and that the variance 
function            is constant over time. When that is not the 
case, we apply certain transformations to stabilize the data or 
use weighted least squares to estimate the parameters [13]. 
Efficient transformations for count-type data include the 
logarithm, square root and quadratic root. 

III. MODEL PARAMETERS ESTIMATION  

We use the least-squares (LS) method [13] to estimate the 
parameters in the proposed model of     . The advantages of 
least-squares estimation are that it does not require knowledge 
of the underlying distribution of the error component      and 
when the model is linear it delivers explicit expressions for the 
parameters’ estimates. In addition when      is assumed to 
have a Gaussian distribution, it is possible to make inferences 
about the parameters’ significance and about the model’s 
validity and usefulness, and hence use the model to make 
predictions about future observations. 

 As explained in [7], we process call arrival data by 
aggregating arrivals into non-overlapping time intervals of 
length     1 second, or 1 minute or 1 hour. Thus we will use 
the total number of calls within time intervals rather than the 
exact call time of arrival.  

Let                  denote the number of calls arrived 
at the system in non-overlapping time intervals 
                           , such that tk=tk-1+   . Least-
squares estimators are thus obtained by minimizing the loss 
function in (3), which is expressed as sum of squared 
deviations between the observed and expected numbers of 
calls: 

                                             
 

 

   

                                   

Replacing        by its expression in (2), we obtain: 

                                         
   

   
          

 

   

 

   

      

 

   
          

   

   
        

      

 

   
          

   

   
           

 

                       

 

The LS estimators are obtained when minimizing SS, with 

respect to each of the model parameters                        . 

This is done through taking partial derivatives of SS with 
respect to the parameters which leads to the following system 
of linear equations:  

           

 

   

   

                     

 

   

               

                     

 

   

              

                              

 

   

     

                                      
 

 
           

 

   

 

                                      
 

 
          

 

   

 

 

Define the m-dimensional vectors n=[n1,…,nm],    
                           and the coefficient vectors 

                              ,              and 

              where the prime sign is used to denote the 
transpose of a matrix or vector. Therefore,   is the vector that 
contain all the coefficients in the linear model. Also, define the 

(mxT/2) matrices, M1 and M2 whose (k,i)th entries are 

respectively,            and           ;  (mx6) matrix, M3 
whose (k,j)th entry is       ; and  (mx(6T/2)) matrices, M4 and 

M5 whose (k,(j-1)T/2+i)th entries are respectively 
                  and                   . If we define the 

(mx(7T+6)) matrix X=[   M1, M2, M3, M4, M5], then the above 
system of 7(1+T) equations can be written as: 

   
    –      = 0 

  
    –      = 0 

  
    –      = 0 

  
    –      = 0 

  
    –      = 0 

  
    –      = 0 

 

This set of equations can be further summarized as: 

                                        –      =                                               
which is equivalent to the equation: 

                                                       =                                                      
If the size of the data, m, was larger than the number of 

parameters 7(1+T), the design matrix X would have a full rank, 
i.e., its columns would be linearly independent, so       would 
be nonsingular and the solution to the linear system of 
equations (4) would be:  

                                                                                             
However, this might not always be the case, and the solution 

to (6) might involve a generalized inverse of the matrix    , 

which we denote by        and hence the solution is: 

                                                                                             
The vector    contains the LS estimates of the parameters in 
model (2). By combining equations (1) and (4), we can show 

that the covariance of    is           or          depending on 

the rank of X, where               
 
   

 
        

   . The standard errors of the parameters are the diagonal of 

the covariance matrix and they will come in handy when we 

conduct inferences about the parameters.  



 
Notice that in order to obtain these estimators; we didn’t 

need to make any assumptions about the distribution of the 
number of calls. The Gaussian assumption becomes of outmost 
importance when we test the significance of the parameters and 
their real contribution to model. The assumption is also crucial 
to test the usefulness of the model as a whole in explaining the 
behavior of the call arrival data.  

To conduct the test of significance about a parameter:      

Ho: θi = 0 against H1: θi ≠ 0, we use Wald’s test statistic,      
         , the ratio of the estimate of θi and its standard error. 

This statistic has a Student t-distribution with          
degrees of freedom. Since the number of observations is very 
large, the test statistic has an asymptotic Gaussian distribution, 
and hence a parameter is significantly different from zero at 5% 
level if its Wald’s test statistic is larger than 1.96 in absolute 
value. When applied to each parameter in the model, the test of 
significance allows us to remove all non-significant parameters 
and keep only the variables and factors that seem to affect the 
behavior of the call numbers.  

            Estimate            Std. Error     t value      Pr(>|t|)     
αo 401200  1377 291.359  < 2e-16  
α1 203157  1947 104.324         < 2e-16  
β1 -325874  1947 -167.341        < 2e-16  
α2 23597  1742 13.547           < 2e-16  
β2 -25652  1947 -13.173           < 2e-16  
α3 -27364  1590  -17.210           < 2e-16  
β3 -36522  1742 -20.968    < 2e-16  
α4 -28370  1485 -19.110    < 2e-16  
γ1 -83936   3152  -26.631    < 2e-16  
γ2 -169175   3079  -54.944    < 2e-16  
γ6 34884         3079    11.329    < 2e-16  
φ1,1  85330         4530    18.837    < 2e-16  
ρ1,1  -91083        4384   -20.777    < 2e-16  
φ2,1  -47459        4461  -10.639    < 2e-16  
ρ2,1  -26264        4368 -6.012   1.47e-08  
φ3,1  41411         4301 9.628    < 2e-16  
ρ3,1  -12106        4384 -2.762                0.006512   
φ1,2  136490        4354 31.345    < 2e-16  
ρ1,2  -141163        4354 -32.418    < 2e-16  
φ2,2  -12283        4354 -2.821                  0.005477   
ρ2,2  53830  4266    12.617    < 2e-16  
φ1,6  -10486  4354    -2.408                  0.017318    
ρ1,6  -11654  4354    -2.676                  0.008320   
φ2,6  -15842  4354    -3.638                  0.000384  
ρ2,6  -11968  4266    -2.805                 0.005737  

 

The significance of the model is investigated in the ANOVA 

table below: 

TABLE 2. ANOVA MODEL SIGNIFICANCE 

Source d.f. Sum of 

squares 

Mean 

Squares 

F-

Statistic 

p-

value 

Model 25 1.12 e+13 4.47 e+11 2478.71 <2e-16 

Error 141 2.55 e+10 1.81 e+8   

Total 166     

 

The very small p-value indicates that the proposed model is 

highly significant and explains well the different patterns and 

the general behavior of the call arrival data. This is confirmed 

by the large value of coefficient of determination (adjusted for 

the number of variables) R2= 0.9973. This means that 99.73% 

of the variability in the data is explained by the proposed 

model (2).   

 

 
Figure 1. Fitted Gaussian model      against collected data 

IV. MODEL VALIDATION 

The estimation and significance testing operations rely 
heavily on the validity of the assumption we make. The 
analysis conducted in the previous sections was based on major 
assumptions: The number of calls per time unit follows a 
Gaussian process, the proposed model in (2) is unbiased and 
the variance of the observed number of calls is constant. 
Checking these assumptions is done through the analysis of the 
residuals defined as the difference between observed number of 
calls nk and the estimate of the expected number of calls        
(also known as the predicted values), we denote by:  

                       . 

When the numbers of calls follow a Gaussian process, the 
residuals themselves follow a standard Gaussian (Normal) 
distribution. The results of normality tests are presented in the 
table below: 

TABLE 3. NORMALITY TEST RESULTS 

Normality Test p-value 

Anderson-Darling  0.2708 

Kolmogorov-Smirnov 0.8346 

Shapiro-Wilks 0.4129 
 

The null hypothesis is the normality of the residuals 

distribution. We can see in Table 3  that the p-values are large 

therefore, we conclude, that the normality assumption holds 

and that the call numbers follow a Gaussian distribution. 
 

The unbiasedness of the model is verified by plotting the 
residuals against time. Such graphs exhibit some sort of 
nonrandom pattern when the considered model is biased. The 
graph shown in Figure 2  bellow shows a completely random 



behavior of the residuals against time. This confirms the 
accuracy of our proposed model. The graph also shows us that 
there is no reason to believe that the residuals’ variance 
changes over time. 

 
Figure 2. Residuals against time 

 
Finally the stability of the process is checked by plotting the 

residuals against the predicted values as shown in Figure 3. The 
range over which the residuals vary does not change with the 
predicted values which confirms the homoscedasticity 
(constant variance) of the process. 

 

 
Figure 3. Residuals against the predicted values 

V. PREDICTION 

The usefulness of model lies in its ability to explain the 
behavior of the system under study and in predicting the future 
state of the system [9] [13]. In this section, we use the proposed 
methodology to construct a model based on data collected in 
week 1 and then use the model to predict data for following 
two weeks. In Figure 4 below, we compare the predicted call 
numbers based on week 1’s model with the observed (actual) 

call numbers that we collected in weeks 2 and 3 on the same 
tandem switch. The figure shows clearly that the actual 
observations fall very close to the curve of the estimated model.  

 
Figure 4. Predicted against actual call arrivals for two random weeks 

The Gaussian approach of modeling call arrival rate allows 
us to build different time-dependent models based on the 
specific engineering requirements. For example, one might 
consider the variation of call arrivals from one week to another, 
or from one month another, etc.  It is also possible to use our 
methodology to consider the variation of calls from one hour to 
the other.  Holidays, and special days can easily be dealt with 
by giving them indicator functions.     

VI. CONCLUSION 

In this paper we fit a linear Gaussian process model to call 
arrivals instead of traditional Poisson process models.  The 
choice of such model is motivated by the simplicity of 
Gaussian process and by its adequacy to fit high traffic call 
arrivals. The benefits of using Gaussian models are: (1) The 
model is intuitive and easily interpretable (2) The parameters 
are easily estimated and (3) The model is easily validated. We 
provide mathematical details to justify the Gaussian 
assumption,  assess the performance of the proposed model 
through the ANOVA significance test, and check the model 
adequacy through goodness-of-fit tests and split-sample 
validation. 
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