
Testing First: Emphasizing Testing in Early Programming
Courses

Will Marrero
wmarrero@cs.depaul.edu

Amber Settle
asettle@cs.depaul.edu

School of CTI
DePaul University
Chicago, IL 60604

ABSTRACT
The complexity of languages like Java and C++ can make
introductory programming classes in these languages ex-
tremely challenging for many students. Part of the complex-
ity comes from the large number of concepts and language
features that students are expected to learn while having lit-
tle time for adequate practice or examples. A second source
of difficulty is the emphasis that object-oriented program-
ming places on abstraction. We believe that by placing a
larger emphasis on testing in programming assignments in
these introductory courses, students have an opportunity
for extra practice with the language, and this affords them
a gentler transition into the abstract thinking needed for
programming. In this paper we describe how we empha-
sized testing in introductory programming assignments by
requiring that students design and implement tests before
starting on the program itself. We also provide some pre-
liminary results and student reactions.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Experimentation

Keywords
CS1, CS2, TDD, testing

1. INTRODUCTION
A common challenge among those who teach introduc-

tory programming courses, especially courses in which Java
or C++ is used, is that there is insufficient time to solve
problems that are large enough to demonstrate the benefits
of object-oriented design. This challenge is clearly present in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’05,June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

the introductory programming sequence at DePaul Univer-
sity’s School of Computer Science, Telecommunications, and
Information Systems (CTI). Almost all information technol-
ogy students, both undergraduate and graduate, take a two
quarter sequence in introductory programming in Java. At
CTI, it is especially important to address this challenge be-
cause of the large number of students in less technical infor-
mation technology degrees that do not go on to advanced
programming courses and who many not experience first
hand the benefits of object oriented programming. Addi-
tionally, there is pressure to cover a large number of topics
in these initial two courses because of the diversity of the
students in these courses. Testing is one of the topics that
can easily be pushed aside in order to cover more Java fea-
tures, especially when the academic year is divided into ten
week quarters as it is at CTI. In this paper, we describe
how we have emphasized testing in our introductory Java
courses, and the benefits that have resulted from this ap-
proach. Below, we describe some of the challenges that we
have tried to address. In the rest of the paper, we provide
background on our introductory programming sequence, we
provide examples of our testing first methodology, and we
conclude with a summary of our experiences while using this
strategy.

1.1 Introductory programming challenges
While teaching the introductory Java courses, we have

identified challenges that we want to address. Some of these
arise from the great diversity of students in our introduc-
tory courses and their various educational goals. However,
most if not all of these challenges are common across all
introductory Java courses.

There seems to be a discrepancy between the importance
that educators place on testing and the actual testing that
students do during their education. Recently, the ACM
and IEEE have pointed out the importance of testing in
their final report on computing curricula [6]. This is by no
means a new observation. In 1977, Alford, Hsia, and Petry
argued the importance of introducing and using software
engineering techniques (including testing) in the introduc-
tory programming courses [1]. In 1978, Schneider suggested
ten essential objectives of an initial programming course of
which two were devoted to debugging and testing [7]. De-
spite the consensus that testing is an important component
to all programming, including introductory programming,
the importance of testing is often overlooked in introductory
programming courses. Sometimes, students will be required

to submit a test suite with their assignment. Often these
test suites are incomplete, incorrect, or even missing.

A second challenge is the difficulty that many students
face when they first encounter the abstraction of classes and
objects in Java. Initial programming assignments often re-
quire students to implement small, but complete and self-
contained, applications. It is not too difficult for them to un-
derstand how the program they write is required to behave.
However, as the topics of classes and objects are discussed
and students are asked to develop classes that provide some
service as opposed to complete applications, students often
struggle trying to understand what is required of them. It
seems that for many, the transition from a program as pro-
viding a solution to a problem to a program as providing
a useful abstraction, is a difficult one. This difficulty often
manifests itself in the solutions the students submit as well
as in the test suites they write for their assignments.

1.2 Emphasizing testing
We propose to address these problems by placing a greater

emphasis on testing in introductory programming courses.
We have done this by designing programming assignments
in such a way that students focus on testing up front, either
while working on the assignment or before working on the as-
signment. This idea of thinking about testing before writing
code is often referred to as test-driven development (TDD)
by advocates of Extreme Programming (XP). This notion
has also been advocated by educators, who have proposed
various ways of implementing this methodology in the class-
room. Implementation suggestions have varied from provid-
ing tools to help both students and graders measure test
coverage [3], to providing a tool that tests each student as-
signment submission with each student test submission [5],
to organizing exercises so that test writing can precede code
writing [2]. We have mostly opted for the simplest technique
(requiring test submissions ahead of the actual code submis-
sion) because we want to minimize instructor overhead, and
because we would like to emphasize testing in introductory
courses. The details of our assignments are given in section 3
of the paper.

We have made this change with two goals in mind. The
first goal is to have students place a greater emphasis on test-
ing with minimal added work for the instructor and minimal
extra time spent in class on the topic of testing. This is es-
pecially important for students who need to see testing but
do not have a separate advanced course that covers testing.
The second goal (and the one that motivated this approach
in the first place) is to provide students with an easier tran-
sition to classes and objects. The idea of a service class
and a tester or client class provide a concrete introduction
to modularity. Furthermore, having students focus on code
that uses a class should help them to get a better idea of
what the requirements of the class are. In other words, by
using the class, students work on something concrete that
helps them to understand the abstraction.

2. BACKGROUND
To understand how and why we have integrated testing

into the introductory Java courses CTI, one needs to under-
stand the role that such courses have in the curriculum both
at the undergraduate and graduate level.

The School of CTI was established in 1996, growing out
of the Department of Computer Science in the School of

Liberal Arts and Sciences at DePaul University. CTI is
now the largest and most diverse institution for informa-
tion technology education in the United States. CTI offers
nine Bachelor of Science degrees and ten Masters of Science
degrees, as well as two Bachelor of Arts degrees and several
joint degrees with other Schools at DePaul [8]. Over 40 per-
cent of all graduate students in Illinois studying information
technology are enrolled at CTI.

The primary programming languages taught at CTI are
Java and C++. The majority of degrees require students
to take a two quarter Java programming sequence, which
includes CSC 211: Programming in Java I and CSC 212:
Programming in Java II. Six of the undergraduate degrees in
CTI require that students take both CSC 211 and CSC 212,
and one requires students to take only CSC 211. Five M.S.
degrees require students to take both CSC 211 and CSC
212, four offer at least one track that requires two quarters
of Java, and one degree requires only CSC 211. This means
that students from seventeen different programs enroll in the
introductory Java sequence. While many of these students
will go on to take more advanced Java courses such as data
structures and software engineering, students in two degrees
are only required to take one quarter of Java and students in
two additional degrees do not take any Java classes beyond
CSC 212 [8]. For these students, it is crucial that instruction
about testing be provided as early as possible in the Java
sequence.

The first course in the Java sequence, CSC 211, takes a
balanced approach between introducing objects early and
teaching more procedural concepts. The first five weeks of
CSC 211 cover variables, data types, expressions, control
structures, and the use of some pre-defined classes. Right
before or immediately after the midterm, students begin to
learn how to define their own classes, and then move on
to cover arrays, and to touch on event-driven programming
and graphical user interfaces. In the beginning of CSC 212,
students learn more advanced array topics such as sorting
and multidimensional arrays. The rest of the course includes
event-driven programming and graphical user interfaces in
greater depth, inheritance and polymorphism, exceptions
and I/O streams, recursion, and the use of fundamental data
structures such as lists and stacks. Additionally, while not
part of the course description in the catalog, one of the learn-
ing goals of CSC 212 is that students be able to write a set
of tests to validate the operation of a given class. During the
time period relevant to this paper, CSC 211 and 212 used
two different textbooks [4, 9], and both take an objects first
approach.

Finally, CTI offers a very large number of its courses in
a distance-learning format. Each distance-learning section
is associated with a traditional section of the course that
meets one a week in the evening. Various aspects of the lec-
ture are recorded via CTIs Course OnLine (COL) system.
In particular, not only is the audio and video of the instruc-
tor recorded, but also all writing on the whiteboards as well
as everything presented on the classroom projector. Stu-
dents in the distance-learning sections can then watch these
recordings on their personal computers at their leisure. Both
traditional students and distance-learning students submit
their assignments via the COL system, typically with the
same submission deadlines. Since the authors taught courses
with associated distance-learning sections, the testing-first
approach was applied to these students as well.

3. ASSIGNMENTS AND STUDENT REAC-
TIONS

As CTI began to embrace the objects first approach to in-
troductory programming, we began to notice the difficulty
that students have with the idea of classes as abstractions.
Many students already struggle with procedural program-
ming when asked to develop a full (but simple) application.
When asked to develop a class that can provide some ser-
vice, many students struggle trying to understand what is
being asked of them. This difficulty is manifested in both the
solutions submitted by the students as well as by the test
suites that they provide along with the class. This initial
observation, together with insufficient coverage of testing in
class lectures, led us to adopt the strategy of placing a much
greater emphasis on testing of assignments. We now de-
scribe some of the assignments that students were required
to complete as well as how we placed a greater emphasis on
testing.

3.1 Testing in Java I
Although students in the first Java programming course

already face two significant tasks, learning to program and
learning the intricacies of the Java language, we hypothe-
sized that introducing a third task, namely testing, would
ultimately help them. We tested this hypothesis using an
assignment which involved designing and writing a test pro-
gram for a class followed by the class implementation itself.

Students in two sections, one a traditional section and one
a distance-learning section, of a fall 2004 CSC 211 course
were asked to write an AirTemp class. This class is in-
tended to represent a temperature reading taken on the
planet Earth. The students were given a detailed API for
the class which included a constructor, an equals method,
and two accessors to retrieve the temperature, one in the
Fahrenheit scale and one in the Celsius scale. Students were
provided with a compiled implementation of the class and
asked to create a test application for the AirTemp class. The
main task of the assignment was to create the class itself.
The test application was due two days before the AirTemp
class.

Table 1 provides average scores for a number of assign-
ments, including the AirTemp class. The data in the first
two rows correspond to sections taught in the fall of 2004.
The first row corresponds to a traditional class while the
second corresponds to a distance-learning section. In both
sections, the testing first approach was used. The student
performance on the AirTemp assignment, the fifth of the
quarter, was poor relative to earlier assignments. In both
sections student performance on the testing application and
AirTemp class were not significantly different.

This was the first assignment involving the implementa-
tion of a class, a task that is typically difficult for Java I
students. In order to gauge the impact of the testing em-
phasis, it is helpful to compare the fall 2004 sections with
previous sections taught by the same instructor. The lower
three rows of Table 1 provide data for sections of the same
course taught by the same instructor during the fall 2003.
The bottom row corresponds to a distance-learning section,
while the other two rows correspond to two different tradi-
tional sections. All three sections were given as an assign-
ment the task of writing only the AirTemp class. They were
provided with a test application written by the instructor.
Those courses were given one extra assignment, so that the

AirTemp class was the sixth assignment. In none of these
sections was the AirTemp assignment the lowest scoring as-
signment.

These results seem to indicate that the testing require-
ment hurt student performance rather than helping. There
are several possible explanations. It may be that the fall
2003 students were overall stronger than the fall 2004 stu-
dents. To rule out this possibility, one can look a the scores
in the fourth column of Table 1 which corresponds to the as-
signment after the AirTemp assignment and which students
in all sections had in common. The similarity in these scores
would also rule out the possibility that the student grader
was more stringent in the fall 2004 quarter than the stu-
dent grader in the fall 2003 quarter. Comparisons between
midterm exam scores in the last column also yield similar
results.

We suspect that students were overwhelmed when they
were asked to complete an assignment with two parts, both
of which were new to them. This assignment was the first
time students were asked to implement a separate class and
it was the first time students were asked to write a test
suite. Testing and class writing are topics that students do
typically struggle with and perhaps some initial practice is
necessary before students can begin to do it well. If this is
the case, then this additional practice early on could be very
helpful and would lead to higher scores on later exercises in-
volving testing. In particular, on the final exam during the
fall 2003 quarter, every student was asked a question requir-
ing them to write a client program to test a class completed
as a part of the exam. Students did poorly on this question,
despite having seen numerous such programs throughout the
quarter. We intend to have such a question on the final exam
during the fall 2004 quarter in order to test our hypothesis
that the emphasis on testing on assignments would lead to
students having better testing skills at the end of the quar-
ter.

3.2 Testing in Java II
In the second quarter of Java students begin to write more

significant programs. From the start they are expected to
create and read programs that involve multiple classes and
files. It is natural to begin to more seriously address the
issue of testing in this course. To do this we developed sev-
eral assignments that emphasized testing. We describe a
representative selection of the assignments and the associ-
ated student outcomes below.

3.2.1 A Hand class for blackjack
In one instructor’s CSC 212 course in the fall of 2003,

students had to develop a blackjack application across four
assignments. One of the assignments involved developing a
Hand class that could be used to represent either the player’s
hand or the dealer’s hand in a game of blackjack. Students
had already developed a Card class and were given a correct
implementation of the Card class. The design of the Hand
class was discussed during the lecture and students were
given a skeleton of the class and asked to supply code for
the various methods

In order to stimulate deeper thought about testing and
about the requirements of the Hand class, students were pre-
sented with a testing competition. Students were informed
that their test suites would be executed on their own Hand
class as well as on the implementations submitted by other

testing first? section prior grades AirTemp grade next grade midterm
yes fall04 live 87%, 79%, 77%, 77% 60% 76% 86%

fall04 dl 91%, 83%, 62%, 86% 55% 75% 88%

fall03 live1 94%, 99%, 88%, 87%, 75% 78% 79% 85%
no fall03 live2 84%, 103%, 94%, 92%, 87% 86% 83% 86%

fall03 dl 86%, 101%, 85%, 80%, 78% 96% 72% 77%

Table 1: Student scores for the AirTemp class in Java I

students and would earn extra credit for finding errors in
other students’ code. Because the class was small (four stu-
dents), this could be done manually. Attempting such a
competition with a larger class would have been infeasible,
even with an automated tool such as the one presented in [5]
since the grader would have to identify if the source of any
errors was the test code or the class code. The average score
on this assignment (after factoring out the extra credit) was
92%. The average scores earned on the three earlier pro-
gramming assignments were 93%, 99%, and 108%, but the
two highest scores included extra credit points. It is useful
to compare these scores with a different section taught by
the same instructor in the spring of 2004. This later section
was much larger and so it was not possible to conduct the
testing competition. Students in this section earned an av-
erage score of 79% on the Hand class assignment. Students
in this section had the same set of earlier assignments and
received scores of 63%, 79%, and 88% on those assignments.
The significant difference in all the scores can be explained
at least in part by the fact that the lower scoring class con-
sisted of all undergraduate students while the higher scoring
class consisted of all graduate students who were completing
a prerequisite in their graduate program.

While it is difficult to draw a conclusion from the scores
alone, it does seem that this assignment has provided a sig-
nificant step toward achieving our initial goals, namely a
greater focus on testing on the part of the students as well as
a gentler introduction to classes, abstractions, and require-
ments. We are very encouraged by the added engagement
with testing demonstrated by the students in the testing
competition as well as their greater appreciation of the need
for precise requirements. These students asked the instruc-
tor to clarify various points of the requirements so that they
could write more thorough tests. For example, they asked
the instructor to clarify how to score a hand that contains
an ace. They also asked the instructor to clarify what the
upper limit on the number of cards in a hand and the upper
limit on the number of aces in the shoe were. These ques-
tions were not asked in the other section. Also, a number
of students in the section without the competition made the
incorrect assumption that the getScore method would only
be invoked on a hand with two cards. Ultimately, the tests
submitted for the Hand class competition were more thor-
ough than the tests submitted by the same students on other
assignments. These tests were also more thorough than the
tests submitted for the Hand class by students in the section
that did not have a competition.

3.2.2 A GradeBook class
Students in three different sections of one instructor’s CSC

212 class were also given an assignment that required them
to implement a GradeBook class. The GradeBook class had

to provide methods to add student names and assignment
names as well as actual grades. Once again, all students were
asked to submit both a solution and a test suite; however,
in the last section students were required to submit the test
suite two days before the GradeBook class was due. The
average score in the first two sections were 79% and 99%.
Again the first score was from an all undergraduate class
while the second score was from an all graduate class. The
average score in the section that required a test suite first
was 89%. This last section consisted of both graduate and
undergraduate students.

As in the blackjack Hand class, a number of questions were
generated by students who first had to submit a test suite.
Students asked what the behavior of getGrade and setGrade
should be if the grade book did not contain a matching stu-
dent or assignment. These students also asked if students
and assignments could be added to the grade book after
some grades had already been inserted. Students that were
not asked to submit the test suite first did not ask these
questions.

A better measure of the impact of the testing first strategy
is student performance on the final exam. The last two sec-
tions had a question on the final exam which asked students
to provide a test suite for an IntegerSet class. The class in
which testing was emphasized had an average score of 70%
on this final exam question while students in the previous
section had an average score of 47% on the same question.
It should be noted that this improvement occurred despite
that fact that the better scoring section covered the same
material in only 5 weeks during the summer and so had
significantly fewer programming assignments.

3.2.3 An Applet for MouseEvents
During the fall 2004, students in a traditional and distance-

learning section of CSC 212 were asked to write two applets
with listeners for MouseEvents. The first applet displays a
colored dot when the user clicks the mouse in the window.
Initially the dot is red and centered around position (50,
50) in the window. As the user clicks in the window, the
dot is re-drawn centered around the location where the user
clicks and is re-drawn in a randomly chosen color with a
randomly chosen size. The second applet displays the word
”UP” when the mouse is in the window but the mouse but-
ton is not pressed, the word ”DOWN” when the mouse is
in the window and the mouse button is pressed, and the
word ”OUT” when the mouse is not in the window. Both
applets were modifications of examples given in class, and
students were given access to web pages containing the .class
file for the solution to each applet for a demonstration of the
applet’s behavior.

Since the assignment did not involve the development of
an independent class, it was not possible to ask them to

create a client program for the assignment. Instead, two
days before the applets were due, students were asked to
create a document describing the purpose and function of
each method needed for both applets, and a plan for testing
that each method performs as expected.

Students did quite well on this assignment. Students in
the traditional section earned 75% on the assignment, which
is the fourth highest of the seven assignments during the
quarter. Students in the distance-learning section performed
even better, earning 84% on the assignment, which was the
second highest assignment and only slightly lower than the
Java I review assignment given during the first week of the
quarter. It was interesting for us to see that students per-
formed well despite the fact that the testing portion of this
assignment was more abstract and more vaguely described
than the client programs mentioned above.

4. CONCLUSIONS AND FUTURE WORK
While the quantitative results for the testing assignments

do not indicate uniform improvement, we believe the em-
phasis on testing has been qualitatively beneficial for stu-
dents in the introductory Java courses. First, the test suite
provides some kind of transition from writing self-contained
applications to writing classes providing some service. Many
students struggle with the process of abstraction that is in-
volved in designing and implementing classes. When writing
the test programs or documents first, students can momen-
tarily ignore the daunting task of implementing the class
and can concentrate on the concrete task of using a class.
By focusing on the use of the class, students are better able
to reason about the required behavior of the class and to
then write code that tests that required behavior. These
assignments also forced the students to put into practice
good software engineering principles early in the curricu-
lum. They clearly forced students to put more effort into
testing. But as the significant increase in the number of
questions regarding the assignment demonstrates, these as-
signments also forced students to realize that the high level
problem description was insufficient to arrive at a solution.
Students were forced to consider how someone is allowed to
interact with their class and students began to appreciate
the importance of clear requirements.

From our experience, there are two recommendations we
have for instructors interested in trying this approach. First,
make the testing portion of the assignment required. On a
CSC 212 assignment from the fall 2004 quarter which is not
described in this paper, one of the authors made the testing
portion, a pair of files that was to be processed by the regu-
lar part of the assignment, extra credit. Only two students
out of thirty participated in the testing portion of the as-
signment. Clearly, this did not produce any benefit for the
class as a whole. Second, students in introductory courses
need to be provided with the .class file for the instructor’s
solution when creating their testing document. One author
did not do this for the Java II students, and the students
complained that this forced them to complete the assign-
ment early in order to have the class that was to be tested
done. It was inconceivable for them that one could write a
dummy version of the class in order to develop the testing
program.

We feel that there are several areas for future work. It
would be interesting to more tightly couple the testing on
assignments and the midterm and final exams. This would

provide a second way to determine if students are benefiting
from assignments that take a testing first approach, beyond
comparisons of assignment performance. It would also be
helpful to analyze the student evaluations of courses that
use the testing first approach and compare them with sim-
ilar courses taught by the same instructor to see if student
satisfaction was impacted by the approach.

5. REFERENCES
[1] M. Alford, P. Hsia, and F. Petry. A software

engineering approach to introductory programming
courses. In Proceedings of the 7th SIGCSE Technical
Symposium on Computer Education, pages 157–161,
1977.

[2] J. Bergin, J. Caristi, Y. Dubinsky, O. Hazzan, and
L. Williams. Teaching software development methods:
The case of extreme programming. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer
Science Education, pages 448–449, 2004.

[3] S. Edwards. Rethinking computer science education
from a test-first perspective. In Companion of the 18th
Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
pages 148–155, 2003.

[4] A. Gittleman. Computing with Java: Programs,
Objects, Graphics, Second Alternate Edition.
Scott/Jones Publishers, 2002.

[5] M. Goldwasser. A gimmick to integrate software testing
throughout the curriculum. In Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science
Education, pages 271–275, 2002.

[6] The Joint Task Force on Computing Curricula.
Computing Curricula 2001 Computer Science,
December 2001. Available at
http://www.computer.org/education/cc2001/cc2001.pdf.

[7] G. M. Schneider. The introductory programming course
in computer science – ten principles. In Papers of the
SIGCSE/CSA Technical Symposium on Computer
Science Education, pages 107–114, 1978.

[8] School of Computer Science, Telecommunications, and
Information Systems, DePaul University.
http://www.cti.depaul.edu, 2004.

[9] C. T. Wu. An Introduction to Object-Oriented
Programming with Java, 3rd Edition Update (Java 1.5
Update). McGraw Hill, 2004.

